Evaluation of Blue Confirmation Lights at Signalized Intersections in Overland Park, Kansas, to Reduce Red Light Running Violations

Tomás E. Lindheimer

Eric J. Fitzsimmons, Ph.D.
Steven D. Schrock, Ph.D., P.E.
Kwaku Boakye

The University of Kansas

1 Report No. K-TRAN: KU-1	2 Governme	ession No.	3 Recipient Catalog No.
4 Title and Subtitle Evaluation of Blue Confirmation Lights at Signalized Intersections in Overland Park, Kansas, to Reduce Red Light Running Violations			5Report Date October 2015
			6 Performing Organization Code
Author(s) Tomás E. Lindheimer, Eric J. Fitzsimmons, Ph.D., Steven D. Schrock, Ph.D., P.E., and Kwaku Boakye			7 Performing Organization Report No.
Performing Organization Name and Address The University of Kansas Civil, Environmental and Architectural Engineering Department 1530 West $15^{\text {th }}$ Street Lawrence, Kansas 66045-7609			10 Work Unit No. (TRAIS)
			11 Contract or Grant No. C1944
12 Sponsoring Agency Name and Address Kansas Department of Transportation Bureau of Research 2300 SW Van Buren Topeka, Kansas 66611-1195			13 Type of Report and Period Covered Final Report September 2012-March 2014
			14 Sponsoring Agency Code RE-0604-01
$15 \begin{array}{ll}\text { Supplementary Notes } \\ \text { For more information write to address in block } 9 .\end{array}$			
Red Light Running (RLR) is a safety concern for communities nationwide. The Federal Highway Administration (FHWA) reported that a total of 676 fatalities in 2009 were due to RLR. There are many strategies to mitigate RLR violations that fall in the categories of engineering, enforcement, or education. This research project focused on confirmation lights, a low-cost countermeasure which enhances enforcement at four-approach intersections. Confirmation lights were deployed at two intersections in Overland Park, Kansas. Traffic was observed at the treatment sites, nearby signalized intersections (spillover), and control sites. Traffic was recorded before deployment, 1 month after, and 3 months after deployment. A total of 14 intersections were recorded during the morning peak hours ($7 \mathrm{a} . \mathrm{m}$. to $9 \mathrm{a} . \mathrm{m}$.) and the afternoon peak hours (4 p.m. to 6 p.m.) for a total of 583 hours of traffic video. A test of proportions showed that overall the confirmation lights did not significantly reduce RLR violations. A violation analysis showed that there was a global increase in RLR violations after deployment, indicating that other factors were involved in the increase of violations observed. Time into the red analysis showed that the majority of RLR violations occurred within 1 second into the red. The negative binomial regression model re-affirmed that the confirmation lights were not a significant factor in the RLR violations observed. The model showed that lane volume, presence of a right-turn lane, and traffic movement (left or through movement) were significant factors.			
17 Key Words Red Light Running, Intersection Safety, Confirmation Lights		18 Distribution Statement No restrictions. This document is available to the public through the National Technical Information Service www.ntis.gov.	
19 Security Classification (of this report) Unclassified	20 Security Classification (of this page) Unclassified	$21 \begin{aligned} & \text { No. of pages } \\ & 171\end{aligned}$	22 Price

This page intentionally left blank.

Evaluation of Blue Confirmation Lights at Signalized Intersections in Overland Park, Kansas, to Reduce Red Light Running Violations

Final Report

Prepared by
Tomás E. Lindheimer, Graduate Research Assistant Eric J. Fitzsimmons, Ph.D., Post Doctoral Researcher Steven D. Schrock, Ph.D., P.E., Associate Professor
Kwaku Boakye, Graduate Research Assistant

The University of Kansas

A Report on Research Sponsored by
THE KANSAS DEPARTMENT OF TRANSPORTATION TOPEKA, KANSAS
and
THE UNIVERSITY OF KANSAS
LAWRENCE, KANSAS
October 2015
© Copyright 2015, Kansas Department of Transportation

PREFACE

The Kansas Department of Transportation’s (KDOT) Kansas Transportation Research and NewDevelopments (K-TRAN) Research Program funded this research project. It is an ongoing, cooperative and comprehensive research program addressing transportation needs of the state of Kansas utilizing academic and research resources from KDOT, Kansas State University and the University of Kansas. Transportation professionals in KDOT and the universities jointly develop the projects included in the research program.

NOTICE

The authors and the state of Kansas do not endorse products or manufacturers. Trade and manufacturers names appear herein solely because they are considered essential to the object of this report.

This information is available in alternative accessible formats. To obtain an alternative format, contact the Office of Public Affairs, Kansas Department of Transportation, 700 SW Harrison, $2^{\text {nd }}$ Floor - West Wing, Topeka, Kansas 66603-3745 or phone (785) 296-3585 (Voice) (TDD).

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the views or the policies of the state of Kansas. This report does not constitute a standard, specification or regulation.

Abstract

Red Light Running (RLR) is a safety concern for communities nationwide. The Federal Highway Administration (FHWA) reported that a total of 676 fatalities in 2009 were due to RLR. There are many strategies to mitigate RLR violations that fall in the categories of engineering, enforcement, or education. This research project focused on confirmation lights, a low-cost countermeasure which enhances enforcement at four-approach intersections. Confirmation lights were deployed at two intersections in Overland Park, Kansas. Traffic was observed at the treatment sites, nearby signalized intersections (spillover), and control sites. Traffic was recorded before deployment, 1 month after, and 3 months after deployment. A total of 14 intersections were recorded during the morning peak hours (7 a.m. to 9 a.m.) and the afternoon peak hours (4 p.m. to 6 p.m.) for a total of 583 hours of traffic video. A test of proportions showed that overall the confirmation lights did not significantly reduce RLR violations. A violation analysis showed that there was a global increase in RLR violations after deployment, indicating that other factors were involved in the increase of violations observed. Time into the red analysis showed that the majority of RLR violations occurred within 1 second into the red. The negative binomial regression model re-affirmed that the confirmation lights were not a significant factor in the RLR violations observed. The model showed that lane volume, presence of a right-turn lane, and traffic movement (left or through movement) were significant factors.

Acknowledgements

The authors would like to thank the Kansas Department of Transportation for its sponsorship of this project. The authors also acknowledge the help provided to the research team by individuals from the City of Overland Park and the Overland Park Police Department.

Table of Contents

Abstract v
Acknowledgements vi
Table of Contents vii
List of Tables ix
List of Figures x
Chapter 1: Introduction and Magnitude of the Problem 1
1.1 Background 1
1.2 Research Objectives 2
Chapter 2: Literature Review 3
2.1 Definition of Red Light Running 3
2.2 Frequency of Red Light Running 3
2.3 Characteristics of Red Light Runners 4
2.3.1 Factors Contributing to Red Light Running 5
2.4 Red Light Running Countermeasures 7
2.5 Engineering Countermeasures 8
2.5.1 Traffic Signal Timing 9
2.5.2 Yellow Change Interval 9
2.5.3 All-Red Clearance Interval 10
2.5.4 Green Extension 11
2.5.5 Signal Operation and Coordination 11
2.5.6 Driver Information 12
2.5.7 Improve Signal Visibility 12
2.5.8 Improve Signal Conspicuity 12
2.5.9 Advance Warning Signs. 15
2.5.10 Physical Improvements 17
2.6 Enforcement Countermeasures 18
2.6.1 Automated Enforcement 18
2.6.2 Targeted Enforcement 20
2.6.3 Confirmation Lights 20
2.7 Public Awareness Campaigns 23
2.8 Literature Review Summary 24
Chapter 3: Research Approach 25
3.1 Site Selection 25
3.1.1 $119^{\text {th }}$ and Blue Valley Parkway 27
3.1.2 College Boulevard and Metcalf Avenue 29
3.1.3 Interchanges on Interstate Highways 30
3.2 Site Category 31
3.2.1 Treatment Sites 31
3.2.2 Spillover Sites 32
3.2.3 Control Sites 33
3.3 Site Description 35
3.3.1 Treatment Sites 35
3.3.2 Spillover Sites 47
3.3.3 Control Sites 71
3.3.4 Summary 96
Chapter 4: Data Collection and Methodology 98
4.1 Data Reduction 102
4.2 Data Collection and Reduction Limitations. 103
4.3 Installation of Confirmation Lights 104
4.4 Public Awareness of the Confirmation Lights 105
Chapter 5: Comparison of Violation Rates After Confirmation Light Installation 108
5.1 Background 108
5.2 Methodology 108
5.3 Results for Change in Red Light Running Violations 110
5.3.1 Analysis of Left-Turning Movement Red Light Running Violations 110
5.3.2 Analysis of Through Movement Red Light Running Violations 112
5.3.3 Violation Analysis for Treatment Sites 114
Chapter 6: Time into Red Analysis 121
6.1 Background 121
6.2. Methodology 121
6.3 Results 122
6.3.1 Left-Turning Movement 122
6.3.2 Through Movement 124
6.3.3 Incidents over Two Seconds into the Red 127
6.4 Summary 134
Chapter 7: Statistical Model and Discussion 135
Chapter 8: Discussion and General Findings 145
References 149
Appendix: Press Release for Overland Park and Lawrence 155

List of Tables

Table 2.1: Intersection, Traffic, and Environmental Factors Relating to RLR 6
Table 2.2: Possible Causes and Appropriate Countermeasures for RLR 7
Table 2.3: Engineering Countermeasures to Reduce RLR 8
Table 3.1: $75^{\text {th }}$ Street and Metcalf Avenue Yellow and All-Red Times in Seconds 37
Table 3.2: College Boulevard and Quivira Road Yellow and All-Red Times in Seconds 44
Table 3.3: $71^{\text {st }}$ Street and Metcalf Avenue Yellow and All-Red Times in Seconds 49
Table 3.4: 75 ${ }^{\text {th }}$ Street and Conser Street Yellow and All-Red Times in Seconds. 53
Table 3.5: $79^{\text {th }}$ Street and Metcalf Avenue Yellow and All-Red Times in Seconds 57
Table 3.6: $119^{\text {th }}$ Street and Quivira Road Yellow and All-Red Times in Seconds. 61
Table 3.7: College Boulevard and Nieman Road Yellow and All-Red Times in Seconds 65
Table 3.8: College Boulevard and Pflumm Road Yellow and All-Red Times in Seconds 68
Table 3.9: $95^{\text {th }}$ Street and Metcalf Avenue Yellow and All-Red Times in Seconds 74
Table 3.10: College Boulevard and Nall Avenue Yellow and All-Red Times in Seconds 77
Table 3.11: College Boulevard and Antioch Road Yellow and All-Red Times in Seconds 81
Table 3.12: 95 ${ }^{\text {th }}$ Street and Antioch Road Yellow and All-Red Times in Seconds 85
Table 3.13: $103^{\text {rd }}$ Street and Antioch Road Yellow and All-Red Times in Seconds 89
Table 3.14: $103^{\text {rd }}$ Street and Metcalf Avenue Yellow and All-Red Times in Seconds 94
Table 5.1: Results of the RLR Violation Analysis for Left-Turning Movements 110
Table 5.2: Results of the RLR Violation Analysis for Through Movements 113
Table 5.3: Left-Turn Violations at Treatment Sites. 115
Table 5.4: Left-Turn Volumes at Treatment Sites 116
Table 5.5: Through-Movement Violations at the Treatment Site. 118
Table 5.6: Through-Movement Volumes at Treatment Sites 119
Table 7.1: Model Variable Statistics. 137
Table 7.2: Negative Binomial Model Results with All Variables 138
Table 7.3: Linear Correlation Between Volumes 139
Table 7.4: Correlation Results Between Variables 140
Table 7.5: Stepwise Analysis for Parameters Eligible for Entry 141
Table 7.6: Stepwise Procedure Results 142
Table 7.7: Negative Binomial Regression Results 142
Table 7.8: Negative Binomial Regression Model Results 143

List of Figures

Figure 2.1: Retroreflective Backplate Border 13
Figure 2.2: Redundant Red Light Signal Configurations 14
Figure 2.3: Lighted Stop Bar System (Active) in Houston, Texas 14
Figure 2.4: LED Backplate in Houston, Texas 15
Figure 2.5: W3-3 Signal Ahead Sign 16
Figure 2.6: W3-4 Be Prepared to Stop Sign 16
Figure 2.7: Be Prepared to Stop Sign Supplemented with Flashing Beacons 17
Figure 2.8: (a) Blue Confirmation Light Wiring, (b) Daytime Operations, and (c) Nighttime Operations 21
Figure 3.1: Map of Overland Park 26
Figure 3.2: $119^{\text {th }}$ and Blue Valley Parkway (Aerial Image) 27
Figure 3.3: Shoulder for (a) Westbound (b) Northbound (c) Eastbound (d) Southbound Approach at $119^{\text {th }}$ Street and Blue Valley Parkway 28
Figure 3.4: College Boulevard and Metcalf Avenue Aerial View 30
Figure 3.5: Location of Treatment and Spillover Intersections in Overland Park, Kansas 33
Figure 3.6: Location of Treatment and Control Intersections in Overland Park, Kansas 34
Figure 3.7: $75^{\text {th }}$ Street and Metcalf Avenue Aerial View 36
Figure 3.8: Signal Mounting for $75^{\text {th }}$ Street and Metcalf Avenue for (a) Northbound (b) Southbound (c) Eastbound and (d) Westbound Approaches 37
Figure 3.9: Four Hours of Peak-Period Volumes for $75^{\text {th }}$ Street and Metcalf Avenue 38
Figure 3.10: Turning Movements at $75^{\text {th }}$ Street and Metcalf Avenue for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches 39
Figure 3.11: College Boulevard and Quivira Road Aerial View 40
Figure 3.12: College Boulevard and Quivira Road Signal System for (a) Northbound Approach, (b) Southbound Approach, (c) Eastbound Approach, and (d) Westbound Approach 41
Figure 3.13: (a) Green Indication for Permitted Right Turn (b) Yellow Indication for Permitted Right Turn 42
Figure 3.14: Westbound College Boulevard and Quivira Road (a) Right Turns are Allowed (b) No Right Turns are Allowed 43
Figure 3.15: Four Hours of Peak-Period Volumes for College Boulevard and Quivira Road 45
Figure 3.16: Turning Movements at College Boulevard and Quivira Road for (a) Northbound, (b)Southbound, (c) Westbound, and (d) Eastbound Approaches46
Figure 3.17: 71 ${ }^{\text {st }}$ Street and Metcalf Avenue Aerial View. 48
Figure 3.18: Four Hours of Peak-Period Volumes for $71^{\text {st }}$ Street and Metcalf Avenue 50
Figure 3.19: Turning Movements at $71^{\text {st }}$ Street and Metcalf Avenue for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches 51
Figure 3.20: $75^{\text {th }}$ Street and Conser Street Aerial View 52
Figure 3.21: Four Hours of Peak-Period Volumes for $75^{\text {th }}$ Street and Conser Street 54
Figure 3.22: Turning Movements at $75^{\text {th }}$ Street and Conser Street for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches 55
Figure 3.23: 79 ${ }^{\text {th }}$ Street and Metcalf Avenue Aerial View 56
Figure 3.24: Four Hours of Peak-Period Volumes for $79^{\text {th }}$ Street and Metcalf Avenue 58
Figure 3.25: Turning Movements at $79^{\text {th }}$ Street and Metcalf Avenue for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches 59
Figure 3.26: $119^{\text {th }}$ Street and Quivira Road Aerial View 60
Figure 3.27: Four Hours of Peak-Period Volumes for $119^{\text {th }}$ Street and Quivira Road 62
Figure 3.28: Turning Movements at $119^{\text {th }}$ Street and Quivira Road for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches 63
Figure 3.29: College Boulevard and Nieman Road Aerial View 64
Figure 3.30: Four Hours of Peak-Period Volumes for College Boulevard and Nieman Road. 66
Figure 3.31: Turning Movements at College Boulevard and Nieman Road for (a) Westbound, (b) Eastbound 66
Figure 3.32: College Boulevard and Pflumm Road Aerial View 68
Figure 3.33: Four Hours of Peak-Period Volumes for College Boulevard and Pflumm Road 69
Figure 3.34: Turning Movements at College Boulevard and Pflumm Road for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches 70
Figure 3.35: $95^{\text {th }}$ Street and Metcalf Avenue Aerial View 72
Figure 3.36: $95^{\text {th }}$ and Metcalf (a) Eastbound, (b) Westbound, (c) Eastbound Stop Line Alignment, and (d) Southbound 73
Figure 3.37: Four Hours of Peak-Period Volumes for $95^{\text {th }}$ Street and Metcalf Avenue. 75
Figure 3.38: Turning Movements at $95^{\text {th }}$ Street and Metcalf Avenue for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches 75
Figure 3.39: College Boulevard and Nall Avenue Aerial View 77
Figure 3.40: Four Hours of Peak-Period Volumes for College Boulevard and Nall Avenue 78
Figure 3.41: Turning Movements at College Boulevard and Nall Avenue for (a) Northbound (b) Southbound (c) Westbound (d) Eastbound Approaches 79
Figure 3.42: College Boulevard and Antioch Road Aerial View 80
Figure 3.43: Four Hours of Peak-Period Volumes for College Boulevard and Antioch Road 82
Figure 3.44: Turning Movements at College Boulevard and Antioch Road for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches 83
Figure 3.45: $95^{\text {th }}$ Street and Antioch Road Aerial View 84
Figure 3.46: Four Hours of Peak-Period Volumes for $95^{\text {th }}$ Street and Antioch Road 86
Figure 3.47: Turning Movements at $95^{\text {th }}$ Street and Antioch Road for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches 87
Figure 3.48: $103{ }^{\text {rd }}$ Street and Antioch Road Aerial View 88
Figure 3.49: Four Hours of Peak-Period Volumes for $103^{\text {rd }}$ Street and Antioch Road 90
Figure 3.50: Turning Movements at $103{ }^{\text {rd }}$ Street and Antioch Road for (a) Northbound (b) Southbound (c) Westbound (d) Eastbound Approaches 91
Figure 3.51: $103{ }^{\text {rd }}$ Street and Metcalf Avenue Aerial View 92
Figure 3.52: $103^{\text {rd }}$ and Metcalf Signals at (a) Northbound, (b) Southbound, (c) Eastbound, and (d) Westbound 93
Figure 3.53: Four Hours of Peak-Period Volumes for $103{ }^{\text {rd }}$ Street and Metcalf Avenue 95
Figure 3.54: Turning Movements at $103^{\text {rd }}$ Street and Metcalf Avenue for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches 95
Figure 3.55: Volumes for All Periods Between Sites 97
Figure 4.1: Overhead Camera View of an Intersection Approach. 98
Figure 4.2: Camera View of an Intersection Approach 99
Figure 4.3: Equipment Used for Field Data Collection Effort. 100
Figure 4.4: Camera Setup at an Intersection 101
Figure 4.5: Sample of Reduced Video Data 103
Figure 4.6: Field Installation of the Confirmation Light 105
Figure 4.7: Confirmation Lights at $75^{\text {th }}$ Street and Metcalf Avenue 106
Figure 4.8: Confirmation Light at College Boulevard and Quivira Road 106
Figure 4.9: Project Investigator Meeting with the Media at a Treatment Intersection 107
Figure 6.1: Left-Turning Movement Time into Red at Treatment Intersections... 122
Figure 6.2: Left-Turning Movement Time into Red at Spillover Intersections. 123
Figure 6.3: Left-Turning Movement Time into Red at Control Intersections 123
Figure 6.4: Through Movement Time into Red at Treatment Intersections 125
Figure 6.5: Through Movement Time into Red at Spillover Intersections 125
Figure 6.6: Through Movement Time into Red at Control Intersections 126
Figure 6.7: Through Movement Violation at $95^{\text {th }}$ Street and Metcalf Avenue. 127
Figure 6.8: Eastbound Left Turn Violation at College Boulevard and Nieman Road. 128
Figure 6.9: Westbound Violation at College Boulevard and Nieman Road 129
Figure 6.10: Afternoon Violation at College Boulevard and Nieman Road 130
Figure 6.11: Violation 66 Seconds into the Red at $95^{\text {th }}$ Street and Antioch Road. 131
Figure 6.12: Violation at $95^{\text {th }}$ Street and Antioch Road 57 Seconds into the Red. 132
Figure 6.13: Violation at $103{ }^{\text {rd }}$ Street and Antioch Road 82 Seconds into the Red 132
Figure 6.14: Violation at $103^{\text {rd }}$ Street and Antioch Road 192 Seconds into the Red 133

Chapter 1: Introduction and Magnitude of the Problem

1.1 Background

Red light running (RLR) crashes at signalized intersections continue to be a serious safety concern in the United States. The most recent national crash data indicates that 676 fatalities occurred due to RLR in 2009, which represents 10 percent of all intersection crashes and two percent of all roadway fatalities (FHWA, n.d.). According to the Insurance Institute for Highway Safety (IIHS), in addition to the 676 fatalities in 2009, there were 113,000 injuries caused by people running a red light in 2009 (IIHS, 2011). In the state of Kansas, running a red light accounted for 2.2 percent of reported crashes in 2010 (KDOT, 2013). The IIHS reported that two-thirds of the fatalities were people other than the driver who ran a red light. Overall, the driver running a red light accounted for 36 percent of the total deaths, pedestrians and bicyclists for 6 percent, occupants of the RLR vehicle accounted for 12 percent, and 46 percent of the total fatalities were occupants in vehicles that did not run the red light (IIHS, 2011). Vehicles running a red light also have significant economic impacts associated with every serious injury or fatality crash. The Federal Highway Administration (FHWA) reported in 2005 that the societal cost relating to RLR was approximately $\$ 14$ billion annually (FHWA, 2005). Communities across the United States have responded to RLR through such countermeasures as targeted enforcement campaigns, intersection geometric and signal timing improvements, low-cost countermeasures, and automated enforcement.

These countermeasures have been implemented across the country and their effectiveness has been reported by previous research studies (McGee, Eccles, Clark, Prothe, \& O’Connell, 2003; Bonneson \& Zimmerman, 2004; Hallmark, Oneyear, \& McDonald, 2012). The literature reviewed the effectiveness of these countermeasures found by researchers. Also stated in the literature search, many communities have turned to automated enforcement to monitor and ticket red light runners at signalized intersections. Automated enforcement, although found by many research studies to be effective at reducing RLR violations and related crashes, has become a target of driver privacy. The State of Kansas currently has legislation that prohibits the use of automated enforcement (K.S.A. § 21-6101(a)(6), 2013), unless deemed essential to safety by a community and all other options have been exhausted. However, automated enforcement can be
found in the neighboring state of Missouri. Traditionally, when signalized intersections have been identified as a location with a high number of RLR violations, traditional targeted enforcement is used to reduce the number of violations.

In the case of targeted enforcement, multiple police officers are needed to verify that a vehicle has run a red light to correctly ticket the driver. Many times, this requires at least one officer watching the signal and stop line while another is waiting downstream of the targeted approach and/or movement. In some instances, an officer observing a RLR violation will chase an offending driver through the intersection, thus exposing him or her to crossing vehicular traffic.

1.2 Research Objectives

The objective of this study was to investigate the effectiveness of a low-cost signalized intersection treatment to reduce RLR at signalized intersections, determine any potential effects the confirmation lights may have on drivers, and develop a statistical model to assess the effectiveness of the confirmation lights, as well as identify other factors that may contribute to the behavior of drivers running a red light. Confirmation lights were chosen because of their low installation and maintenance costs. Confirmation lights are a way to aid police officers in enforcing RLR violations when positioned downstream from the intersection, and have been deployed in many communities across the United States. However, limited effectiveness data have been published that can support the effectiveness of this device. A performance measure used is the changes in RLR violations observed at the treatment sites. A secondary performance measure that is used is the change of a violation's time into red, which is an indicator of how far after the red signal a vehicle ran the red light. To monitor the effects of the confirmation lights on drivers, time into the red of violations is measured.

Chapter 2: Literature Review

This chapter provides a current literature review on RLR. It cites information from articles, informational and technical reports, research journals, and other relevant publications pertaining to RLR. Currently, a wide range of countermeasures exists to mitigate RLR violations and crashes. These include traffic signal timing adjustments, physical improvements, advance warning for drivers, automated enforcement, targeted enforcement, and public awareness campaigns. It also covers different definitions for RLR, attitudes and frequency of RLR incidents, characteristics of red light runners, and factors that contribute to RLR.

2.1 Definition of Red Light Running

The definition of RLR differs from state to state based on whether "permissive yellow" or "restrictive yellow" laws are in effect. According to the Manual on Uniform Traffic Control Devices for Streets and Highways (MUTCD; FHWA, 2009) and the Uniform Vehicle Code (UVC), under the "permissive yellow" rule, a "driver can legally enter intersection during the entire yellow interval and violation occurs if driver enters intersection after onset of red." Under the "restrictive yellow" rule, a "driver can neither enter nor be in intersection on red and violation occurs if driver has not cleared the intersection after onset of red."

In most states, vehicles that are within the intersection waiting to make a left turn when the signal changes from yellow to red are not considered to be running a red light, and are encouraged to clear the intersection. At intersections where a right turn on red is permitted, a vehicle must come to a complete stop; failure to do so is also considered a violation (IIHS, n.d.b). For this study, only vehicles that were behind the stop line when the light turned red and then proceeded to traverse through the intersection were considered as a red light runner. When a stop line was not clearly outlined, then the pedestrian crosswalk was used.

2.2 Frequency of Red Light Running

A research study was conducted in 1994 and 1995 to analyze RLR violation data at two busy intersections equipped with red light cameras in Arlington, Virginia. The study found a total of 8,121 RLR violations over a period of 2,694 hours, representing an average of 3.0 red
light runners per hour (Retting, Williams, \& Greene, 1998). In 2003, a study was performed to develop models to predict RLR violation rates at four-legged intersections based on their traffic operational and geometry characteristics. They collected RLR violation data at 19 study intersections in four states (Alabama, California, Iowa, and Texas) for a period of 6 hours on weekdays (2 p.m. to 8 p.m.). They observed 1,775 violations in 554 hours, representing a rate of 3.2 violations per hour per intersection (Hill \& Lindly, 2003).

McCartt and Eichelberger (2012) conducted a study to evaluate the attitudes of drivers towards red light camera programs in 15 cities in the United States. A sample size of 3,411 drivers participated in the telephone survey study. Results of the study indicated that 82 percent of the drivers said running red lights was a serious threat to their personal safety, and 93 percent said it was unacceptable to society.

The AAA Foundation for Traffic Safety conducted a national survey from September to October 2013 to assess the degree to which Americans value and pursue traffic safety. A sample size of 3,103 U.S. residents aged 16 years and older was asked to complete a web-based survey for this study. It was found that approximately 93 percent of drivers considered RLR as an aggressive and unacceptable way of driving. However, 35 percent of the same drivers admitted to running a red light least once in the previous month (AAA Foundation for Traffic Safety, 2014). Driver attitudes toward RLR and the frequency of violations have not changed over the years. Drivers are aware of the risks implied by running a red light, and view the behavior as unacceptable. However, drivers still admit to running a red light on occasion. This shows that RLR is an ever-present danger faced by drivers at intersections.

2.3 Characteristics of Red Light Runners

Porter, Berry, Harlow, and Vandecar (1999) conducted a telephone survey study to identify red light runners and their characteristics. Out of the 5,024 respondents who completed the survey, 4,007 were concentrated in 10 target states and 1,017 were in the remaining 40 states. Based on national data, the authors concluded that a driver running a red light was more likely to be:

- A younger driver;
- A driver without a child or children (less than 20 years old);
- Driving alone;
- In a rush to school or work in the morning on weekdays;
- Unemployed or employed in jobs requiring less education;
- Driving more than two miles from home; and
- Previously ticketed for RLR.

Retting and Williams (1996) also conducted a similar study to investigate the behavior of red light runners in Arlington, Virginia. They asked trained observers to collect RLR violation data at an intersection equipped with red light enforcement cameras. During each cycle length, the observers recorded the characteristics of the drivers that ran the red lights and the type of vehicles they were driving. Out of 1,373 observations, the observers recorded 462 RLR violations at the study location. Findings from their study indicated that red light runners generally were drivers below 30 years of age, who drove small cars and had multiple convictions for speeding and moving violations. They also found out that violations were common to drivers with car models manufactured after 1991 and the drivers were less likely to be wearing seat belts.

Retting, Ulmer, and Williams (1999) extracted data from 1992 to 1996 from the Fatality Analysis Reporting System (FARS) and the General Estimates System (GES) to review the characteristics of red light runners. They found that red light runners involved in fatal crashes were more likely to be a male driver under 30 years of age, more likely to have been ticketed for moving violations, and more likely to have been convicted for driving while intoxicated. The authors also found that the violators were more likely to run red lights in the nighttime than in the daytime, and 53 percent of such drivers were believed to have a high blood alcohol concentration.

2.3.1 Factors Contributing to Red Light Running

In the previous section, it was found that a majority of the RLR violations and crashes were human related. However, many studies have identified other contributing factors that lead to the frequency of RLR.

Traffic operation characteristics, such as approach volume, and speed and intersection features, such as signal timing, approach grade, and sight distance, affect drivers' behavior as they approach an intersection. Additionally, environmental factors such as time of day and weather conditions may also influence driving behavior (Yang \& Najm, 2006). Table 2.1 explains how intersection, traffic, and environmental factors contribute to the frequency of RLR.

Table 2.1: Intersection, Traffic, and Environmental Factors Relating to RLR

Element	Variable	Key Findings	Reference
Intersection	Signal Timing	The frequency of RLR increases when the yellow interval is less than 3.5 seconds.	Brewer et al., 2002
		Longer yellow intervals will cause drivers to enter intersection later and lengthening the all-red intervals caters to red light violators.	Eccles and McGee, 2000
	Stopping Distance	Probability of a vehicle stopping for traffic signal decreases as its distance from the intersection decreases.	Chang et al., 1985
	Approach Speed	Probability of a driver stopping for traffic signal decreases as the approach speed to the intersection increases.	Chang et al., 1985
	Grade	Probability of a driver stopping for traffic signal increases as the approach grade to the intersection increases.	Chang et al., 1985
	Intersection Width	Drivers tend to stop for traffic signals more at wider intersections than at narrower intersections.	Chang et al., 1985
Traffic \& Environment	Approach Volume	Higher RLR rates are observed in cities with wider intersections and higher traffic volumes.	Porter and England, 2000
		The RLR frequency increases as the approach traffic volume at intersection increases.	Brewer et al., 2002
	Time of Day	Higher red light violations occur during the time period of 3:00 p.m. to 5:00 p.m.	Kamyab et al.,2002; Kamyab et al.,2000
		The average number red light violations are higher during a.m. and p.m. peak hours compared to other times of the day.	Retting et al.,1998
	Day of the week	There are more red light violations on weekdays compared to weekends.	Lum and Wong,2003; Kamyab et al., 2002; Kamyab et al., 2000; Retting et al., 1998
	Weather	The influence of rainfall on RLR behavior is not significant.	Retting et al.,1998

Source: Yang \& Najm, 2006

In addition to human factors, geometric and operational aspects, volume, time of day, and day of the week can contribute to the rate of violations. Researchers noted that with increasing volume there is an increase in violations. There is also an increase in violations during the traffic peak hours of the day.

2.4 Red Light Running Countermeasures

RLR countermeasures fall into three categories: engineering, education, and enforcement. Studies have been conducted to investigate the effectiveness of these countermeasures and sometimes results showed a positive effect in reducing RLR violations and associated crashes. Prior to implementation of any of the countermeasures, studies investigating possible causes of RLR should be carried out and then appropriate countermeasures are selected to mitigate the problem (Bonneson \& Zimmerman, 2004). Table 2.2 shows why a driver might want to run a red light, and correlates the appropriate countermeasures that could, or are likely to, address the cause (Hallmark et al., 2012).

Table 2.2: Possible Causes and Appropriate Countermeasures for RLR

Possible Causes of RLR	Engineering Countermeasures			Enforcement
	Signal Operation	Driver Information	Physical Improvement	
Congestion or excessive delay	\bullet		\bullet	
Disregard for red				\bullet
Judged safe due to low conflicting volume				-
Judged safe due to narrow cross street				\bullet
Judged safe due to following <2 sec behind vehicle in front				\bullet
Expectation of green when in platoon	\bullet			
Downgrade steeper than expected	\bullet			
Speed higher than posted limit	-			
Unable to stop (excessive deceleration)	\bullet			
Pressured by closely following vehicle	\bullet			
Tall vehicle ahead blocked view		\bullet		
Unexpected, first signal encountered		\bullet		
Not distracted, just did not see signal		\bullet		
Distracted and did not see traffic signal		\bullet		
Restricted view of signal		\bullet	\bullet	
Confusing signal display		\bullet		

Source: Hallmark et al., 2012

Driver education, improvements to traffic operations, and geometric improvements can address most possible causes for drivers running a red light. Enforcement should be considered when drivers disregard the red light and use their judgment when crossing the intersection. The following section shows examples of engineering, education, and enforcement countermeasures.

2.5 Engineering Countermeasures

Engineering countermeasures are generally categorized into three groups, namely: signal operation countermeasures, driver information countermeasures, and physical improvement countermeasures. Signal operation countermeasures involve the modifications or adjustments of the timing of the signal phases, and change in cycle interval. With driver information countermeasures, drivers are provided with advance information about existing traffic signals ahead in order for drivers to respond appropriately as they approach an intersection. Physical improvement countermeasures involve the redesign of intersections to increase vehicle operational characteristics. Table 2.3 shows the three countermeasure categories with specific engineering countermeasure to reduce RLR.

Table 2.3: Engineering Countermeasures to Reduce RLR

Countermeasure Category	RLR Countermeasure	
Signal Operation	Yellow change interval	
	Green extension	
	Signal operation and coordination	
	All-red clearance interval	
Driver Information	Improve signal visibility	Placement and number of signal heads
		Size of signal display
		Line of sight
	Improve conspicuity	Redundancy
		LEDs and signal lenses
		Backplates
		Lighted stop line systems and LED outlined backplates
	Advance warning signs	Signal ahead signs
		Advance warning flashers
		Rumble strips
Physical Improvements	Remove unwarranted signals	
	Add capacity with additional traffic lanes	
	Improve the geometry (such as vertical and horizontal curves)	
	Convert signalized intersection to roundabout intersection	

The countermeasures listed in Table 2.3 have a range of cost from very low to high. Physical improvements to an intersection could be too expensive or not feasible for a community. Signal timing and signal conspicuity are among the lower cost and more rapid means to address the problem of RLR at signalized intersections. Outcomes of research studies performed for each countermeasure category are reported herein.

2.5.1 Traffic Signal Timing

Adjusting the traffic signal timing may include the changing of the yellow interval, including an all-red interval, coordination of signals, and extending the green phase. The results of a literature search including research studies and current guidance are included in the following sections.

2.5.2 Yellow Change Interval

The Manual on Uniform Traffic Control Devices for Streets and Highways (MUTCD) provides guidance with regards to minimum and maximum yellow intervals. It recommends that "a yellow change interval should have a minimum duration of three seconds and a maximum duration of six seconds. The longer intervals should be reserved for use on approaches with higher speeds" (FHWA, 2009). In the Institute of Transportation Engineers (ITE) Traffic Engineering Handbook, 6th Edition (ITE, 2009), it is recommended that Equation 2.1 be used to calculate the appropriate yellow time for any signalized intersection approach. However, it cautions that maximum care should be used when the time interval chosen is more than 5 seconds. In their research study, McGee et al. (2012) did not find any reason to suggest a minimum or maximum yellow interval.

$$
\begin{equation*}
Y=t+\left[\frac{v}{2 a+2 G g}\right] \tag{Equation 2.1}
\end{equation*}
$$

Where:
$Y=$ yellow clearance interval (sec.);
$t=$ reaction time (typically 1 sec .);
$v=$ design speed (ft/sec. ${ }^{2}$);
$a=$ deceleration rate (typically $10 \mathrm{ft} / \mathrm{sec}^{2}$);
$g=$ acceleration due to gravity ($32 \mathrm{ft} / \mathrm{sec}^{2}$) ; and
$G=$ grade of approach (percent/100, downhill is negative).

Most RLR violations occur less than 2 seconds after the onset of the red light (Washburn \& Courage, 2004). This means that increasing the yellow signal time could aid drivers in safely clearing the intersection prior to the onset of red signal. Retting, Ferguson, and Farmer (2008) conducted a before-and-after comparison study to determine the effects of lengthening the yellow change time interval at two study intersections in Philadelphia, Pennsylvania. The yellow time was increased by 1 second, followed by red light camera enforcement several months later. They conducted a similar study at comparison intersections without any treatment. Results of their study showed a 36 percent reduction in violations when the yellow change interval was increased by 1 second. With the addition of red light enforcement, they observed a further reduction in RLR violations by 96 percent beyond the implemented yellow time change.

2.5.3 All-Red Clearance Interval

An all-red phase is defined as when all the approaches at an intersection have a red-signal display for a very short period of time. If a vehicle enters an intersection without an all-red interval at the end of the yellow phase, it is more likely to result in a crash if vehicles in conflicting approaches receive a green light (McGee et al., 2003).

According to the MUTCD, "Except when clearing a one-lane, two-way facility or when clearing an exceptionally wide intersection, a red clearance interval should have a duration not exceeding 6 seconds" (FHWA, 2009). However, in the ITE Traffic Engineering Handbook, it is recommended that Equation 2.2 should be used to calculate the appropriate all-red clearance interval (ITE, 2009). McGee et al. (2012) also recommended a minimum of 1 second time to be used for all-red clearance intervals. They suggested that providing additional time for vehicles that are legally in an intersection at the onset of red light allows drivers to clear the intersection in order to avoid conflicts with adjacent traffic stream with a given green light.

$$
\begin{aligned}
& R=(w / L) / v \\
& \quad \text { Where: } \\
& R=\text { all-red interval (sec.); } \\
& \quad \begin{array}{l}
\text { }=\text { width of stop line to far side no conflict point (ft); } \\
v=\text { design speed (ft/sec.); and } \\
L=\text { length of vehicle (ft). }
\end{array} .
\end{aligned}
$$

Schattler, Datta, and Hill (2003) conducted a study at three signalized intersections in Oakland County, Michigan. The purpose of the study was to evaluate the impact of all-red clearance intervals on RLR violations and the late exit of vehicles within the intersections when the red light was indicated. They used video cameras to collect data before and after the implementation of the clearance intervals. They found that the implementation of all-red clearance intervals ranging from 2 to 3 seconds significantly reduced the risk of late exiting vehicles being struck by opposing traffic streams that have a green signal.

2.5.4 Green Extension

Green Extension Systems (GES) extend the green phase of traffic signals before the yellow aspect of the signal is shown. This allows a vehicle or platoon of vehicles to clear the intersection before the yellow indication is shown. With this technology, advance detectors are deployed on the major road approaches at an actuated-signalized intersection to change the signal phase or increase the green time when a vehicle passes over them. Approaches are cleared of vehicles that might have been in the dilemma zone until the green phase is maxed-out.

Zegeer and Deen (1978) conducted a study to evaluate how GES could reduce RLR crashes at three signalized intersections in Kentucky. They used about 9 years of before-crash data and about 4 years of crash data after the installation of the GES at the three study sites. Results of their study showed 54 percent reduction in total crashes.

2.5.5 Signal Operation and Coordination

Two or more adjacent signalized intersections in a signalized corridor are sometimes coordinated to move platoons of vehicles along a corridor in order to minimize delays and increase traffic flow. At isolated locations where signalized intersections are not in coordination, it may result in excessive delays, and impatient drivers may violate a red light when they arrive at an intersection near the end of the green interval. For this reason, adjacent intersections should be coordinated so that the likelihood of drivers running a red light is minimized. Changes in signal phasing or cycle length can also reduce delays which potentially may reduce the frequency of RLR (Bonneson \& Zimmerman, 2002).

2.5.6 Driver Information

One common reason drivers frequently give for running a red light is that they "did not see the signal" (McGee et al., 2003). Poor signal visibility and conspicuity, lack of advance warning signs, and inadequate sight distance at signalized intersections influence driving behavior (Fitzsimmons, Hallmark, McDonald, Orellana, \& Matulac, 2007).

2.5.7 Improve Signal Visibility

The positioning of signals, either overhead or pole-mounted, impacts driving behavior. An overhead signal display provides a clear meaning, good visibility, and eliminates the blockage of drivers' line of sight to the signal head when tall vehicles, such as trucks, are present in the traffic stream.

Schattler, McAvoy, Christ, and Glauber (2011) investigated how different signal mounting configuration affects RLR at urban signalized intersections in Illinois and Michigan. The researchers focused on three types of signal mounting configurations: mast arm, diagonal span wire, and near-side/far-side post mount. They collected data at 12 study intersections looking for RLR and yellow light running using video cameras. Data collection was for 3 hours (noon to 3 p.m.) on weekdays in the spring and summer of 2007. A comparative parallel analysis of their data showed significantly fewer RLR and yellow light running incidents at the intersections with mast arm configurations than the intersections with span wire configurations. At the near-side/far-side post mounted signalized intersections, the authors found a higher rate of RLR and yellow light running. Their study showed that post-mounted configurations reduced the visibility of signal heads, which may result in the increase in the frequency of RLR.

When considering the location to mount a signal head at an intersection, driver line of sight is a critical factor that should not be overlooked. The closer the signal heads are installed as practical to the driver's line of sight, the more visible the signal head becomes.

2.5.8 Improve Signal Conspicuity

Another technique of making the signal head conspicuous is to use retroreflective materials on the borders of backplates as shown in Figure 2.1.

Figure 2.1: Retroreflective Backplate Border
Source: Florida Department of Transportation, n.d.

The MUTCD Section 4D. 18 requires the front surface of the backplate to have a dull black finish "to minimize light reflection and to increase contrast between the signal indication and its background" (FHWA, 2009). Research has shown that signal head backplates have the effect of reducing the frequency of crashes at intersections by 32 percent (Bonneson \& Zimmerman, 2002). In 2010, FHWA reported a before-and-after study at three intersections in Columbia, South Carolina, on the effectiveness of retroreflective borders on the backplates. The study found a 28.6 percent reduction in total crashes when retroreflective stripes were added to existing backplates, a 36.7 percent reduction in injury crashes, and a 49.6 percent reduction in late-night/early-morning crashes (FHWA, 2010).

For intersections where visibility is a problem, using redundant signal heads is a means of improving the conspicuity of the signals. The MUTCD illustrates various configurations of redundant signal heads that have shown to be effective at signalized intersections (FHWA, 2009). Figure 2.2 illustrates different configurations of two red signal heads from the MUTCD. A study in Winston-Salem, North Carolina, found a statistically significant 33.1 percent reduction in RLR right-angle crashes when nine study intersections were equipped with redundant signal heads (Polanis, 2002).

Figure 2.2: Redundant Red Light Signal Configurations
Source: FHWA, 2009

Lighted Stop Bar Systems (LSBS) and Light Emitting Diode (LED) outlined backplates have shown to be effective in reducing RLR at signalized intersections. LSBS consists of markers installed into the pavement along the stop line of an intersection. The markers contain LED lights which activate during the red signal indication of the traffic light. LED outlined backplates also consist of LEDs placed around the perimeter of a signal backplate. The LEDs emit light during the red signal indication of the traffic light to gain the attention of drivers approaching the intersection. Active operation of the LSBS and LED outlined backplates are shown in Figure 2.3 and Figure 2.4, respectively.

Figure 2.3: Lighted Stop Bar System (Active) in Houston, Texas
Source: Tydlacka, 2011

Figure 2.4: LED Backplate in Houston, Texas
Source: Tydlacka, 2011

Tydlacka (2011) conducted a study at two signalized intersections in Houston, Texas, to evaluate the effectiveness of these supplemental traffic control devices. They collected data using video cameras 3 days before and 3 days after the installation of the LED backplates and LSBS separately at the two study intersections. They found a statistically significant reduction of RLR violations from 21.8 to 11.2 violations per day per 10,000 vehicles at the site where the LED backplates were installed. At the intersection with LSBS, they found reductions in RLR violations from 12.9 to 11.3 violations per day per 10,000 vehicles, which was not statistically significant.

2.5.9 Advance Warning Signs

Advance warning signs direct the attention of road users to unexpected roadway conditions that might be not readily apparent to them. According to the MUTCD, the "Signal Ahead" sign (W3-3) shown in Figure 2.5 can be used to alert derivers of the presence of a signalized intersection ahead (FHWA, 2009).

Figure 2.5: W3-3 Signal Ahead Sign
Source: FHWA, 2009

Polanis (2002) analyzed before-and-after crash data (36 to 48 months) from collision diagrams prepared by the Winston-Salem, North Carolina, Police Department to evaluate the effectiveness of eight engineering countermeasures to reduce RLR. A before-and-after study of "Signal Ahead" signs was one of the strategies evaluated. It was found that installation of the "Signal Ahead" sign at 11 study locations showed a 44 percent reduction in right angle crashes. Another type of advance warning sign is the "Be Prepared To Stop" sign (W3-4), as shown in Figure 2.6.

Figure 2.6: W3-4 Be Prepared to Stop Sign
Source: FHWA, 2009

Flashing beacons and "When Flashing" plaques (W16-13P), shown in Figure 2.7, can be added to this sign to alert drivers that the green light is about to change to red in a few seconds (FHWA, 2009).

Figure 2.7: Be Prepared to Stop Sign Supplemented with Flashing Beacons Source: FHWA, 2009

Messer, Sunkari, Charara, and Parker (2004) performed a 2-year study to evaluate how the Advance Warning for End-of-Green Systems (AWEGS), could reduce RLR violations at two high speed intersections in Texas. Red light runners were detected at their study sites by using video imaging vehicle detection systems (VIVDS). Prior to the installation of the systems, they collected data for 2 weeks. After installation of AWEGS, they collected data for 35 days for the first phase of their study, followed by the second phase where data were collected for 21 days. Results of their field evaluations showed that AWEGS reduced RLR violations within the first 5 seconds by 40 to 45 percent.

2.5.10 Physical Improvements

At low-volume intersections where traffic signals are unwarranted, removing the signals can be an effective measure to reduce crashes at such locations, provided the safety and the operational characteristics of the intersections are not compromised. Before traffic signals are installed at any intersection, warrant studies should be conducted based on pedestrian volumes, traffic volumes, and safety measures at the intersection. A study in Philadelphia showed that the
removal of unwarranted signals at 199 low-volume intersections contributed to a crash reduction of 24 percent at those intersections (Retting et al., 1998).

Additional traffic lanes for maneuvering through or making right or left turns at signalized intersections are an effective measure of reducing congestion. Most traffic delays occur at intersections, and when drivers stay in queues for longer periods, they might run the red light to avoid waiting for the next cycle. When additional lanes are added to intersections to increase their capacity, the problem of congestion will be reduced.

A modern roundabout is another alternative to reduce the severity of crashes that are common at signalized intersections. Converting a signalized intersection into a roundabout has shown to increase safety. Rodegerdts et al. (2007) found a 48 percent reduction in all crash types and a 77.7 percent reduction in injury and fatal crashes when nine signalized intersections were converted to a roundabout. Persaud, Retting, Garder, and Lord (2001) performed a study to evaluate the change in vehicle crashes when 23 signalized or stop-controlled intersections were converted to roundabouts at urban, suburban, and rural locations in the United States. They performed a before-and-after Empirical Bayes analysis of the data they gathered. Results of their study showed a 40 percent reduction of all crash types and an 80 percent reduction of all injury crashes at the 23 intersections combined.

2.6 Enforcement Countermeasures

Enforcement countermeasures are those that include the use of a police officer, or a device which acts as a surrogate to a police officer. Several studies have been conducted to investigate the effectiveness of these three countermeasures or combination of the countermeasures in reducing RLR at signalized intersections. Listed in the following sections are research results for enforcement countermeasures.

2.6.1 Automated Enforcement

Automated enforcement is a highly effective way of using cameras to enforce RLR at signalized intersections. As of March 2014, 508 communities in the United States had red light camera programs (IIHS, n.d.-a). Several studies have shown that using automated enforcement is an effective tool in reducing RLR violations and associated crashes at signalized intersections.

Fitzsimmons et al. (2007) found 44 percent, 90 percent, and 40 percent reductions in total, rightangle, and rear-end crashes, respectively, in a study they conducted in Council Bluffs, Iowa.

Similarly, a study conducted in North Carolina at red light camera equipped intersections showed a 17 percent reduction in total crashes, 22 percent reduction in RLR-related crashes, 42 percent reduction in angle crashes, and 25 percent reduction in rear-end crashes (Cunningham \& Hummer, 2004). Studies in Oxnard, California, and Fairfax, Virginia, found enforcement cameras reduced RLR violations by approximately 40 percent (Retting, Williams, Farmer, \& Feldman, 1999a, 1999b).

In addition to the studies that assess the effectiveness of enforcement cameras, researchers from the IIHS state that red-light cameras saved 159 lives from 2004 to 2008 (IIHS, 2011). Hu, McCartt, and Teoh (2011) attempted to assess the impact of RLR cameras by comparing RLR rates in large U.S. cities. In this study, large cities were defined as cities with a population larger than 200,000 residents according to the 2008 census. There were 99 cities that fit the population criteria and had a camera enforcement program in place. Researchers gathered information about each city's red light camera program by reading news reports and contacting city police departments and public works departments. The study used fatal crash data from 1992 to 1996 as the "before" period of the study, since few communities had camera programs during that period. Crash data from 2005 to 2008 were used as the "after" period of the study. Cities were divided into two groups, camera group or comparison group, according to whether the cities did not have camera programs during the before period, and had a camera program during all the years of the after period. Out of the 99 cities, 14 cities comprised the camera group, 48 cities composed the comparison group, and 37 cities were excluded. Crash data were extracted from the Fatality Analysis Reporting System (FARS) for both periods of the study. The research study determined that there was a decline in RLR fatalities in both groups; however, the decline was larger in the camera group with RLR cameras (35 percent) than the comparison group without RLR cameras (14 percent; Hu et al., 2011). These results lead to the estimation that if all cities with more than 200,000 residents would use camera enforcement, a total of 815 fewer fatalities would have occurred during the time periods mentioned in the study (IIHS, 2011).

Not all communities embrace automated enforcement. Kansas state statutes do not allow the use of red-light running cameras (K.S.A. § 21-6101(a)(6), 2013). In Missouri and Kansas City, there is debate about whether the cost of the system is worth the benefits. In Columbia, it was reported that the city collected $\$ 158,515$, with about $\$ 18,000$ net revenue after paying all expenses ("City finds," 2010). In Kansas City, it was reported that the camera system used in 17 intersections cost $\$ 76,000$ monthly ("Are red light cameras," 2012). In 2011, lawmakers in Missouri tried to ban red-light cameras (Peterson, 2011), and in 2013, the Missouri Court of Appeals stalled the enforcement of RLR cameras because "a red-light camera ordinance in the town of Ellisville conflicts with state statutes because it treats running a red light as a nonmoving violation, when the state considers the offense a moving violation" ("KC hits brakes," 2013).

2.6.2 Targeted Enforcement

Targeted enforcement is designed to target an identified signalized intersection or corridor where RLR has recently become a problem, or has been identified as a problem through a crash and/or violation study. Law enforcement agencies will increase the number of officers at a particular location and enforce RLR. The goal of targeted enforcement is to make the public more aware of RLR through an increase in ticketed violations or presence of law enforcement at the intersection.

2.6.3 Confirmation Lights

Confirmation lights are a relatively small, low-cost light mounted on the top or the bottom of a traffic signal head or mast arm. This light is sometimes referred to as "Red-Signal Enforcement Lights," or "Red Indication Lights," "Rat Boxes," or "Tattletale Lights" (Hsu, Smith, \& Rice, 2009). The confirmation light activates simultaneously during the red signal phase to aid a police officer located downstream of the intersection in observing a RLR violation. After the confirmation light turns on, it is visible 360 degrees from any intersection approach. The confirmation light is wired directly into the red signal aspect and only activates when the red light is indicated as shown in Figure 2.8, which shows confirmation lights in operation during the day and night times, respectively.

Figure 2.8: (a) Blue Confirmation Light Wiring, (b) Daytime Operations, and (c) Nighttime Operations

This system eliminates the need for a team of officers to monitor red light violators at a single intersection, thereby reducing the police staff required to effectively enforce RLR at the intersection. Additionally, the low-cost of confirmation lights (approximately \$50 to \$100) potentially allows more installation at other problematic intersections, thereby increasing enforcement resources efficiently (Hsu et al., 2009).

Although confirmation lights have been largely deployed throughout the United States, including communities in Florida, Texas, Minnesota, Kentucky, and California, limited data or research studies have been published to determine effectiveness of the countermeasure in
reducing RLR violations or crashes. Additionally, it was not always clear whether enforcement levels were changed as a result of the installations.

Reddy, Abdel-Aty, and Pinapaka (2008) investigated white enforcement lights at 17 intersections on the state highway system in Hillsborough County, Florida. The researchers evaluated effectiveness by a violation and crash analysis. Five months prior to installation, violation data were collected at 24 intersections on weekdays during morning and evening peaks hours. A similar study was conducted in the 3 months after installation at the 17 intersections in which the lights were installed. Considering all intersections, a total of 759 violations were recorded in the before period, while 567 violations were recorded in the after period. It was noted that some intersections saw an increase in violations. A matched-pair t-test was performed and it was determined that the reduction in violations were statistically significant. The authors further reduced the data and found the reduction in violations during the morning peak hour were not statistically significant, while the evening peak violations were significant at the 95 percent level of confidence.

Crash data were obtained from the Florida Department of Transportation (FDOT) for a period of six years (2000 to 2005). Data from 2000 to 2002 were considered the before period, in which 828 crashes per year occurred at the study intersections, of which 56 crashes per year were due to RLR. Data from January to December 2004 were considered the after period, with 2003 being considered the installation period. An average of 860 crashes per year at the study intersections were recorded, with 52 crashes per year due to RLR. The authors further broke down the crash analysis and investigated approaches with white enforcement lights, and found crashes were reduced from approximately 40 crashes per year to 28 crashes per year (Reddy, Abdel-Aty, \& Pinapaka, 2008).

The Minnesota Local Technical Assistance Program (2009) summarized a completed study conducted by the University of Minnesota and City of Burnsville, Minnesota, in which blue confirmation lights were installed at two signalized intersections on County Roads 5 and 11. An investigation assisted by the University of Minnesota saw the daily violation rate reduced by 41 percent. Research also found that violations increased in heavy traffic and most violations occurred during peak hours.

2.7 Public Awareness Campaigns

Reaching out and educating the public is an effective way to communicate the seriousness of a driver running a red light at a signalized intersection. Public education could include media campaigns, grants for targeted enforcement, commercials, further instruction during drivers' education classes, and/or television newscast segments on high crash intersection locations. Usually public awareness campaigns are used in conjunction with other traffic safety strategies, such as targeted police enforcement. A study by Tarawneh, Singh, and McCoy (1999) evaluated the effectiveness of a public awareness campaign coupled with a targeted police enforcement effort. Researchers monitored RLR behavior at six signalized intersections in Lincoln, Nebraska. The sites were chosen according to crash data, intersection classification, and geometry. Traffic was recorded using video equipment during weekdays from 7 a.m. to 9 a.m., 11 a.m. to 1 p.m., and 4 p.m. to 6 p.m. Targeted enforcement occurred during those hours during the after period of the study. For the awareness campaign various materials were used, such as billboards, signs, and posters. Public service announcements were made for television and radio. The television ads were shown 265 times during the 1 month campaign. Researchers measured vehicles’ entry time during yellow, speed, vehicles’ distance from stop line during the yellow phase, volume of vehicles traversing the intersection during the yellow phase per cycle, proportion of vehicles upstream and proportion of vehicles downstream from the dilemma zone, and RLR violations per cycle. An analysis of variance (ANOVA) test was performed for the before and after analysis. The analysis showed that the public campaign and targeted enforcement had a significant effect on drivers compared to the before situation (prior to the public information campaign), which was observed through a statistically significant reduction in the average time of intersection entry after the onset of yellow. This indicated an aversion to RLR behavior. They were unable to show statistical significance between intersections that only benefited from the public information campaign and those that also had targeted enforcement, possibly because the driving public was unaware which intersections had the targeted enforcement (Tarawneh et al., 1999).

2.8 Literature Review Summary

As reported in the literature search, RLR continues to be a serious safety concern and many communities and researchers have investigated countermeasures ranging from low-cost signal timing adjustments to expensive intersection geometric improvements or automated enforcement. To fully address RLR, it takes all aspects of the "Three E's": Engineering, Enforcement, and Education. Public awareness campaigns coupled with a countermeasure can have an effect on RLR behavior. As stated previously, this research project is intended to investigate a low-cost countermeasure to aid police officers. There was very limited research on the effects of confirmation lights on RLR violations. This research will provide additional information into the effectiveness of the confirmation light system.

Chapter 3: Research Approach

The research study was conducted in Overland Park, Kansas. The City of Overland Park has a population of over 178,000 residents and one of its major centers of activity is Johnson County Community College. The city has a significant number of signalized intersections along major arterials, such as Metcalf Avenue, Quivira Road, Antioch Road, $119^{\text {th }}$ Street, $135^{\text {th }}$ Street, and College Boulevard. Figure 3.1 shows the city limits of Overland Park. Prior to meeting with city officials, it was specified to the city that the study required study intersections be located within the city limits, similar in operations (e.g. traffic signal timing and lane configurations), and have no current or planned construction at any of the intersections during the study period. Since the project was limited to 12 months, it was decided to utilize a violation study in place of a crash study, which would require at least 3 years of before-and-after crash data.

3.1 Site Selection

Before approaching the city to seek permission to investigate the confirmation light system, possible intersections were identified for confirmation light installation. A set of variables were investigated at each of the intersections, including: approach geometry (e.g. number of lanes, pavement markings, taper, and right-turning lane); whether the posted speed limit was between 30 and 50 mph ; the presence of protected left-turning lanes; a safe location where a police car could monitor the intersection approaches; and moderate to high peak hour volumes. A police ride-along was conducted on December 7 and December 15, 2012. During the ride-along, the following intersections and highway interchanges were observed:

1. $119^{\text {th }}$ Street and Blue Valley Parkway;
2. $75^{\text {th }}$ Street and Metcalf Avenue;
3. College Boulevard and Metcalf Avenue;
4. College Boulevard and Quivira Road;
5. $95^{\text {th }}$ Street and Antioch Road;
6. $103^{\text {rd }}$ Street and Metcalf Avenue;
7. Interstate-435 ramp and Metcalf Avenue;
8. $75^{\text {th }}$ Street and Interstate- 35 ramp; and
9. Antioch Road and Indian Creek Parkway.

The following sections present observations made during the ride-along by the officer. Some of the following intersections were eventually decided as treatment sites and some were decided as control sites. Descriptions of the intersections not found in this section are found in later sections in the report. This section contains descriptions of intersections that were considered but not used in the study.

Figure 3.1: Map of Overland Park

3.1.1 $119^{\text {th }}$ and Blue Valley Parkway

The intersection at Blue Valley Parkway and West $119^{\text {th }}$ Street accommodated heavy volumes of traffic during peak hours. For the northbound and southbound approach, there were two left-turning lanes, three lanes for through traffic, and one right-turn lane. For eastbound and westbound approaches, there were two left-turn lanes, three through-traffic lanes, and one rightturn lane. The intersection is shown in Figure 3.2.

Figure 3.2: $119^{\text {th }}$ and Blue Valley Parkway (Aerial Image)
Source: Google Earth, 2013

For northbound and southbound approaches, there was a 2 foot shoulder, some turf, and then a ditch. For the eastbound approach, there were curbs with no shoulders or driveways. The street became a six-lane road, with the right lane designated as a right-turn only for people turning onto Blue Valley Parkway. For westbound traffic, there was a driveway; however, it was too narrow for a patrol car to sit without blocking the entrance to the bank and a restaurant. The shoulders of each approach are shown in Figure 3.3.

Figure 3.3a shows an area recommended by the police officer to monitor traffic if the confirmation lights were to be installed. The police car would be located exactly where the mast arm for westbound approach is located. This means that the officer could only enforce leftturning traffic, since the northbound mast arm is visible through the rear-view mirror, but not the westbound traffic. What could make enforcement more complicated is that the intersection stop line was not visible, and the left-turning traffic was located approximately 10 feet behind the stop line for through movement traffic. Even if a delineator outlining the location of the stop line were to be placed on the street, the officer would have to multi-task and view three different locations in order to view a RLR violation. Figures 3.3b and 3.3d show the shoulder for northbound and southbound traffic, respectively. There was approximately 2 feet of paved shoulder and then a slope. A concern raised by the officer was that most police officers are reluctant to sit on shoulders for enforcement. Figure 3.3c shows the stretch of roadway for
eastbound traffic, where there was no spot for the officer to sit far enough to watch the light and watch traffic. Because of the limited areas for an officer to pull over and watch for violators, this site was not chosen as a deployment site.

3.1.2 College Boulevard and Metcalf Avenue

At College Boulevard and Metcalf Avenue, the northbound and southbound approaches were identified in the field as the approaches with the most RLR violations. The police officer pointed out that this was because of the long queues that form during rush hours. At rush hour, the southbound approach could be backed up all the way to $105^{\text {th }}$ Street. There was also another traffic signal less than a quarter mile away, which made enforcement difficult because of the short distance between signals. According to the police officer, the westbound and eastbound approaches were a problem in the evening rush hour. Also, the proximity of adjacent traffic signals may affect driver behavior and promote RLR.

As was the case at $119^{\text {th }}$ Street and Blue Valley Parkway, there were no convenient spots for a police officer to pull-over and enforce RLR with the use of confirmation lights. The lack of shoulders and the long queues during peak hours would also make it hard for officers to make violators safely pull over.

Figure 3.4: College Boulevard and Metcalf Avenue Aerial View
Source: Google Earth, 2013

3.1.3 Interchanges on Interstate Highways

Signalized intersections at highway ramps were among the top locations for RLR violations and crashes according to both officers and city officials. It can take up to three police officers and a representative at the traffic operations center for targeted enforcement at underpasses such as I-435 and Metcalf Avenue. An officer sits on the shoulder of the overpass bridge and watches the traffic signal and the traffic turning left. When the light turns red, that officer signals to the two other officers waiting on the on-ramp, and those two officers flag down drivers that ran the red light. Only one movement can be enforced at a time. With confirmation
lights installed, officers believed that signalized intersections at highway ramps can be enforced more frequently and on more than one approach at a time.

Overpasses also present issues when conducting targeted RLR enforcement. Because of poor sight distance, the City of Overland Park has installed a "no right turn on red" policy, which drivers are known to ignore. Officers observed that such spots are common for "piggy-back" violations. Piggy-back violations occur when one vehicle proceeds and the queue follows the first vehicle without checking for conflicting traffic. There are also occasions where the first vehicle begins turning right, notices the regulation, then stops, and is involved in a rear-end crash with the vehicle that was following because they were checking for oncoming traffic. This research study focuses on the effectiveness of confirmation lights at four-legged intersections. Factors relating to violations at highway ramps may call for low-cost countermeasures that may or may not include confirmation lights.

After consideration of all intersections, a meeting was set up with City of Overland Park officials, including the city traffic engineer, traffic signal technician, and traffic police officer. City officials agreed on the two treatment sites where the confirmation lights would be installed and also other intersections to be investigated for possible spillover effects of the treatment, and global changes in RLR will be investigated using control intersections located in different areas of the city. Section 3.2 describes the selected intersections used in the study.

3.2 Site Category

3.2.1 Treatment Sites

As stated previously, two signalized intersections in Overland Park were determined to be optimal locations for the confirmation lights to be installed, which included:

- $75^{\text {th }}$ Street and Metcalf Avenue; and
- College Boulevard and Quivira Road.

Detailed information on each intersection can be found in Section 3.3.1 of this chapter. The intersection at $75^{\text {th }}$ Street and Metcalf Avenue was appropriate for this type of enforcement system because there are many driveways where the police officer could sit and monitor the intersections for all approaches. The intersection at College Boulevard and Quivira Road was
also an appropriate location for a police officer to pull over, when compared to the other sites described in Section 3.1. During the police officer ride-along, it was determined that an officer could pull over at the right turn lane for an access driveway that leads into Johnson County Community College for the southbound approach.

3.2.2 Spillover Sites

Spillover sites are signalized intersections located adjacent to the two treatment intersections in Overland Park, and included the following locations:

- $71^{\text {st }}$ Street and Metcalf Avenue;
- $75^{\text {th }}$ Street and Conser Street;
- $79^{\text {th }}$ Street and Metcalf Avenue;
- $119^{\text {th }}$ Street and Quivira Road;
- College Boulevard and Nieman Road; and
- College Boulevard and Pflumm Road.

Previous research studies relating to automated enforcement have indicated that if an intersection was treated with an enforcement device (e.g. automated RLR camera), similar effects toward improving safety can occur at nearby intersections (Retting \& Kyrychenko, 2002; McGee \& Eccles, 2003) thus coining the phrase "spillover effect" or "halo effect." It was a goal to observe if a reduction in red light violations occurred at the treatment intersections, whether a reduction in RLR violations would also occur at these six intersections. A map indicating where the treatment and spillover intersections are located is shown in Figure 3.5.

Figure 3.5: Location of Treatment and Spillover Intersections in Overland Park, Kansas
Source: Google Maps, 2013

3.2.3 Control Sites

Six control sites were selected for the study that were located outside of the study corridor around the City of Overland Park, which included the following:

- $95^{\text {th }}$ Street and Metcalf Avenue;
- College Boulevard and Nall Avenue;
- College Boulevard and Antioch Road;
- $95^{\text {th }}$ Street and Antioch Road;
- $103^{\text {rd }}$ Street and Antioch Road; and
- $103^{\text {rd }}$ Street and Metcalf Avenue.

The purpose of the control sites was to determine if any global changes in RLR violations occurred in Overland Park for the duration of the study. For example, if a reduction in RLR violations at both the control and treatment sites was observed, other factors that could not have been quantified may have contributed in the reduction in RLR violations (e.g. public awareness campaign, severe weather events, or targeted enforcement). It was expected that a reduction in violations at the treatment site and a constant or increase in the number of violations at the control site would also be a strong indicator of the confirmation light effectiveness. Figure 3.6 shows the location of the treatment sites as well as the control sites.

Figure 3.6: Location of Treatment and Control Intersections in Overland Park, Kansas Source: Google Maps, 2013

3.3 Site Description

As stated in the previous section, 14 intersections were utilized for this study. This section provides additional information for each intersection. Each description provides information about land use, posted speed limit, lane configuration, number of lanes, clearance path length, turning movements, and peak hour volumes. Clearance path refers to the distance between the stop line of one approach to the stop line of the opposite approach. This distance was approximated through Google Earth, and it serves as an approximate distance that vehicles have to travel to clear the intersection. The morning and evening peak hours were determined to be 7 a.m. to 9 a.m. and 4 p.m. to 6 p.m., respectively. Traffic was observed on a Tuesday, Wednesday, or Thursday.

3.3.1 Treatment Sites

Video data of RLR violations for the intersection of $75^{\text {th }}$ Street and Metcalf Avenue were collected using vehicle detection cameras. The video data were provided by the City of Overland Park. This intersection was filmed between January 16 and January 24, 2013, for the before study, and between October 29 and October 30, 2013, for the 3-month after period of the study. There were no data provided for the 1-month after period of the study. RLR violation video data were collected by students at the treatment intersection of College Boulevard and Quivira Road using multiple cameras setup at the intersection. The intersection was recorded on March 13 for the before period, August 27 for the 1 -month after, and November 14, 2013, for the 3 -month after period. More details about data collection and reduction are found in a later section.

3.3.1.1 $75^{\text {th }}$ Street and Metcalf Avenue

Metcalf Avenue is the north/south approach, with a designated left-turn lane, a right-turn lane, and two through lanes for both approaches. The speed limit to the south of the intersection was 35 mph . The speed limit to the north of the intersection was 40 mph . The clearance path for traffic along Metcalf Avenue was 106 feet. Along $75^{\text {th }}$ Street the posted speed limit was 35 mph , and the clearance path was 110 feet. For the approaches along $75^{\text {th }}$ Street, there was one left-turn lane, a through lane, and a shared through/right-turn lane for each approach. Figure 3.7 shows an aerial view of $75^{\text {th }}$ Street and Metcalf Avenue.

Figure 3.7: 75 ${ }^{\text {th }}$ Street and Metcalf Avenue Aerial View
Source: Google Earth, 2013

As shown in Figure 3.7, this intersection was located in a dense commercial district. There were convenience stores at the south end of the intersection, a gas station on the northeast corner, and a restaurant in the northwest corner. Left-turn phasing was protected-only on all approaches and right turns were protected for the northbound and southbound approaches. No Uturns were allowed for eastbound and westbound traffic. Figure 3.8 shows the signal heads on all approaches at the intersection.

All overhead signals had backplates installed and there was one signal head per lane for all approaches. There were also pedestrian countdown signals for all pedestrian crosswalks. Only the north and south phases were coordinated. The peak morning and evening cycle length was 140 seconds. Table 3.1 shows the yellow and all-red phase length in seconds as provided by Overland Park.

Figure 3.8: Signal Mounting for $75^{\text {th }}$ Street and Metcalf Avenue for (a) Northbound (b) Southbound (c) Eastbound and (d) Westbound Approaches

Table 3.1: $\mathbf{7 5}^{\text {th }}$ Street and Metcalf Avenue Yellow and All-Red Times in Seconds

Traffic Movement	Phase	
	Yellow seconds)	All-Red (seconds)
Northbound	4.2	3
Northbound Left Tumn	3.3	1.9
Southbound	4.2	2
Southbound Left Turn	3.3	2
Eastbound	3.7	2
Eastbound Left Turn	3.3	2.1
Westbound	3.7	2
Westbound Left Tumn	3.1	2.1

Manuals and literature suggest that yellow phase time should be between 3 and 6 seconds and that caution should be used when using more than 5 seconds. At this intersection, all movements had a yellow timing between 3 and 4.2 seconds. All through movements had a yellow time of around 4 seconds, while left-turning movements had a yellow time around 3 seconds. The literature search also showed that researchers recommend an all-red time between 2 and 3 seconds (Schattler et al., 2003). The northbound through movement traffic had the highest all-red interval time of 3 seconds. All other approaches and movements had around 2 seconds of all-red interval time. Traffic data were provided for only the before and 3-month after period of the study. Figure 3.9 shows the volume for all approaches during both periods of the study, and also shows the combined morning and evening peak hour volumes for all approaches during the before and 3-month after periods of the study.

Figure 3.9: Four Hours of Peak-Period Volumes for $75^{\text {th }}$ Street and Metcalf Avenue

As shown in Figure 3.9, the southbound approach had the highest recorded volumes at the intersection. The eastbound approach had the fewest vehicles out of all four approaches. Traffic volumes were higher during the evening peak. From the total count, 54 percent of vehicles were observed during the evening peak hours. Figure 3.10 shows the turning movements in terms of percentage observed during the peak hours.

Figure 3.10: Turning Movements at $75^{\text {th }}$ Street and Metcalf Avenue for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches

Most of the entering traffic traversed through the intersection at all approaches, rather than turning left or right. The eastbound and westbound approaches had the most left-turning vehicles. The westbound approach also had the highest volume of right-turning vehicles. There were a total of 34,780 vehicles counted, with right turns representing 11 percent of volume counts, left turns 14 percent, and 75 percent of vehicles moving straight through the intersection.

3.3.1.2 College Boulevard and Quivira Road

The posted speed limit on College Boulevard and Quivira Road was 45 mph . On the northbound and southbound approaches of the intersection, there were three through lanes, two left-turn lanes, and one right-turn lane. This intersection was located in a commercial area. The northbound approach had a signed restriction on U-turns, while in the southbound direction a sign allowed U-turns. In the eastbound and westbound approaches there were three through lanes, two left-turn lanes, and one right-turn lane. The intersection is shown in Figure 3.11.

Figure 3.11: College Boulevard and Quivira Road Aerial View
Source: Google Earth, 2013

As shown in Figure 3.11, downstream of the northbound and southbound approaches there were three through lanes. For the northbound and southbound movements, vehicles had to travel approximately 182 feet. The clearance distance for the westbound and eastbound approaches was 183 feet. Johnson County Community College is located at the southwest corner
of the intersection. There was a bank on the northwest corner, an office building on the northeast corner, and restaurants in the southeast corner of the intersection. Figure 3.12 shows the traffic signal set-up at the intersection.

Figure 3.12: College Boulevard and Quivira Road Signal System for (a) Northbound Approach, (b) Southbound Approach, (c) Eastbound Approach, and (d) Westbound Approach

The westbound, northbound, and southbound approaches all had a protected right-turn signal. Left-turn movements were protected on all approaches. For all left-turning movements, there were two signal heads, one per lane, indicating to drivers when to go and stop. As shown in Figure 3.13, the fourth bulb on the signal head facing the right-turn lane had the arrow signaling to drivers that they can turn right. The same signal head had green and yellow colors.

Figure 3.13: (a) Green Indication for Permitted Right Turn (b) Yellow Indication for Permitted Right Turn

For the eastbound approach, there was a sign board indicating to the driver that turning right was not allowed at that time, as shown in Figure 3.14. The sign activated when northbound left-turning traffic was traversing the intersection. Since northbound drivers were allowed to make U-turns, and since an eastbound right-turning vehicle and a northbound U-turning vehicle might conflict if they were performing these maneuvers at the same time, the City of Overland Park installed this secondary notification device.

Figure 3.14: Westbound College Boulevard and Quivira Road (a) Right Turns are Allowed (b) No Right Turns are Allowed

With the presence of the sign board shown in Figure 3.14, only the right-turn violations were monitored when the board was illuminated as shown in Figure 3.14b. This was the only approach at all the study sites where right-turning violations were written down. The signal at the intersection was an eight phase system, and the north and south directions were coordinated. The morning peak cycle length was 120 seconds, and the evening peak cycle length was 140 seconds. Table 3.2 shows the existing signal timing plan for the yellow and all-red intervals.

Table 3.2: College Boulevard and Quivira Road Yellow and All-Red Times in Seconds

Traffic Movement	Phase	
	Yellow (seconds)	All-Red (seconds)
Northbound	4.3	2.6
Northbound Left Turn	3.2	3.3
Southbound	4.3	2.6
Southbound Left Turn	3.2	3.3
Eastbound	4.3	2.4
Eastbound Left Turn	3.2	3.5
Westbound	4.3	2.4
Westbound Left Turn	3.2	3.5

As shown in Table 3.2, all through movements had a yellow time slightly more than 4 seconds. The left-turn movements had slightly more than 3 seconds. All-red clearance intervals for through movements were almost 3 seconds, while for the protected left-turn phase, all intervals were more than 2 seconds. All times shown in Table 3.2 are within the requirements of the MUTCD and the recommendations made by previous research studies as mentioned previously. Volumes and turning movements for all three study periods are shown in Figures 3.15 and 3.16.

Figure 3.15: Four Hours of Peak-Period Volumes for College Boulevard and Quivira Road

Shown in Figure 3.15 are the combined morning and evening peak volumes. The northbound and southbound approaches represent 60 percent of the total volume recorded for all study periods. The 1-month after period had the highest volume count out of all periods of the study, with 20,880 vehicles observed during both peak periods. The southbound and eastbound approaches experienced the highest volume increase during the 1-month after period. The westbound approach saw an increase in volume with each continuing phase of the study. The northbound volumes remained relatively constant throughout the study. From the total volume observed, 55 percent of drivers were observed in the evening peak hour. Shown in Figure 3.16 are the percentages of turning movement volumes.

Between the northbound and southbound approaches, a total of 6,902 right-turning vehicles were observed, representing 71 percent of all right-turning vehicles. More than a quarter of traffic traveling eastbound turned left to travel northbound on Quivira Road. Although the eastbound approach had the highest percentage of left-turning traffic (Figure 3.16d), it was also found to have the second highest count of 3,526 vehicles. The southbound approach was found to have the highest volume count of 3,626 vehicles turning left, which represents 18 percent of the total traffic observed at that approach. The total volume observed at this intersection for both morning and evening peak hours was approximately 59,847 vehicles. In total, 63 percent of vehicles went straight through the intersection, 36 percent turned left, and 28 percent turned right.

3.3.2 Spillover Sites

The video data for the spillover sites were recorded using vehicle detector cameras by the City of Overland Park. The intersection of $75^{\text {th }}$ Street and Conser Street was recorded by a student researcher for the 1-month and 3-month after periods; the before period was recorded by the City of Overland Park. Traffic volumes for the intersection of $79^{\text {th }}$ Street and Metcalf Avenue were recorded for the before and 3-month after periods of the study only.

3.3.2.1 $71^{\text {st }}$ Street and Metcalf Avenue

The intersection of $71^{\text {st }}$ Street and Metcalf Avenue was chosen as a spillover site for the treatment intersection for $75^{\text {th }}$ Street and Metcalf Avenue. This intersection was located in a residential area. There were private residences at all corners of the intersection, except for the southeast corner, where there was a church. The posted speed limit for northbound and southbound traffic was 40 mph ; for eastbound the speed limit was 30 mph , and for westbound it was 25 mph . The clearance path for cars traversing the intersection in the northbound or southbound direction was approximately 100 feet, and was 114 feet for westbound and eastbound traffic. Figure 3.17 shows an aerial view of the intersection.

Figure 3.17: 71 ${ }^{\text {st }}$ Street and Metcalf Avenue Aerial View
Source: Google Earth, 2013

For traffic along Metcalf Avenue (north/south) there was a left-turn lane, a through lane, and a shared through/right-turn lane. There was no protected right-turn signal, the left-turn signal was protected/permitted, and there were no restrictions on left turns. There were three signal heads per approach, two on the mast and one on the post. For traffic along $71^{\text {st }}$ Street, there was a left-turn lane and a shared through/right-turn lane. The left-turn movements were protected/permitted, and there were two signal heads per approach. There was one signal head on the mast and one on the post. All approaches had pedestrian countdown signals, backplates for overhanging signal heads, and the posts and mast arms were decorative black. The northbound
and southbound approach phases were coordinated along the corridor. Table 3.3 shows the yellow and all-red phasing.

Table 3.3: 71 ${ }^{\text {st }}$ Street and Metcalf Avenue Yellow and All-Red Times in Seconds

Traffic Movement	Phase	
	Yellow (seconds)	All-Red (seconds)
Northbound	4	1.5
Northbound Left Turn	3.1	2.1
Southbound	4	1.5
Southbound Left Turn	3.3	2.1
Eastbound	3.3	2.3
Eastbound Left Turn	3.3	1.8
Westbound	3.3	2.3
Westbound Left Turn	3.2	1.8

The morning and the evening peak hour cycles were 140 seconds for the intersection. The through and right-turning movements on the northbound and southbound approaches had a yellow phase time of 4 seconds and an all-red interval of 1.5 seconds. Eastbound and westbound approaches had a yellow time of 3.3 seconds and an all-red interval of 2 seconds. All of these times were within the recommendations found in the literature review and MUTCD. Figure 3.18 shows the volumes recorded during all periods of the study for both morning and evening peak hour periods.

Figure 3.18: Four Hours of Peak-Period Volumes for $71^{\text {st }}$ Street and Metcalf Avenue

As shown in Figure 3.18, vehicular volumes remained constant throughout all periods of the study. The southbound approach had the highest combined volume out of all approaches. Traffic counts were found to be higher during the evening peak hour as compared to the morning peak hour. The increase in traffic volume from morning to evening peak hours was found to be approximately 1,000 vehicles. It's important to note that for the before and 1-month after periods, all approaches were recorded on different days during the week. During the 3-month after period, all approaches on $71^{\text {st }}$ Street (eastbound and westbound) were recorded on the same day, and traffic along Metcalf Avenue was recorded during the same day. Figure 3.19 shows how traffic moved through the intersection.

Figure 3.19: Turning Movements at $71^{\text {st }}$ Street and Metcalf Avenue for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches

A majority of traffic along Metcalf Avenue traversed through the intersection. The westbound approach had the highest percentage (29%) and total volume count $(1,089)$ of right turns for this intersection. The eastbound approach had more than 35 percent of traffic turn left onto Metcalf Avenue, which corresponded to the second highest recorded volume of left turns at this intersection. The 7 percent of southbound left-turning traffic translates to a total volume of 1,228 vehicles, which was the highest volume of left-turning vehicles. In summary, there were a total of 41,675 vehicles counted at this intersection for all three periods combined. Approximately 9 percent of vehicles observed turned left, 6 percent turned right, and 85 percent went straight through the intersection.

3.3.2.2 $75^{\text {th }}$ Street and Conser Street

The intersection of $75^{\text {th }}$ Street and Conser Street was also selected as a spill-over effect site because of its proximity to the signalized intersection of $75^{\text {th }}$ Street and Metcalf Avenue. This intersection was located in a residential area. The posted speed limit along $75^{\text {th }}$ Street (eastbound and westbound) was 35 mph , and the speed limit for Conser Street (northbound and southbound) was 25 mph . The clearance path for vehicles along $75^{\text {th }}$ Street was 70 feet, while for traffic along Conser Street it was 73 feet. Figure 3.20 shows an aerial view of the intersection.

Figure 3.20: $75^{\text {th }}$ Street and Conser Street Aerial View
Source: Google Earth, 2013

In the northeast corner of the intersection there was a city fire station. To avoid westbound traffic blocking the entrance and exit of the station, an emergency traffic signal was placed approximately 129 feet downstream from the stop line, with cars required to stop at this location when the signal shows red. Along $75^{\text {th }}$ Street, there were two lanes that share turning movement traffic. Conser Street gives access to the residential neighborhoods adjacent to the intersection, and there was one lane per approach. There were two signals for the southbound
traffic, one overhead and one on a pole, and only one signal on a pole for northbound movement traffic. Left-turn movements were permitted-only, and along the eastbound approach there were two overhead signals and one on the pole. This configuration was the same for the westbound signals at the intersection and prior to the fire station driveway. There were pedestrian countdown signals at each corner, and backplates installed on all overhead signal lights. There were no protected left-turning movements at this intersection. The traffic signal timing along $75^{\text {th }}$ Street was coordinated, and the morning and evening peak hour cycles were approximately 70 seconds. Table 3.4 shows the yellow and all-red phasing in seconds.

Table 3.4: 75 ${ }^{\text {th }}$ Street and Conser Street Yellow and All-Red Times in Seconds

Traffic Movement	Phase	
	Yellow seconds)	All-Red (seconds)
Northbound	3	2.2
Northbound Left Turn	NA	NA
Southbound	3	2.2
Southbound Left Turn	3	2.2
Eastbound	3.7	1.4
Eastbound Left Turn	NA	NA
Westbound	3.7	1.4
Westbound Left Turn	NA	NA

Traffic along $75^{\text {th }}$ Street had a yellow time of almost 4 seconds, and for traffic along Conser Street, it was 3 seconds. The all-red phase was slightly over 1 second. The all-red phases, along with the yellow time, were within the guidelines and recommendations found in the literature review. Figure 3.21 shows combined morning and evening peak volumes for all three study periods.

Figure 3.21: Four Hours of Peak-Period Volumes for $75^{\text {th }}$ Street and Conser Street

As shown in Figure 3.21, traffic generally proceeded through $75^{\text {th }}$ Street at this intersection. Considering all studied intersections, it was found that the intersection of $75^{\text {th }}$ Street and Conser Street had the overall lowest volume. Traffic volumes recorded during the before and 1-month after period were evenly split between the westbound and eastbound approaches. The before period of the study had the highest number of vehicles observed. Figure 3.22 shows the turning percentages at each approach.

Figure 3.22: Turning Movements at $75^{\text {th }}$ Street and Conser Street for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches

As shown in Figure 3.22, approximately 60 percent of northbound traffic turned onto $75^{\text {th }}$ Street (in either direction), whereas approximately 30 percent of southbound traffic turned onto $75^{\text {th }}$ Street. In total, there were 20,629 vehicles counted at this intersection. Right-turning vehicles comprised approximately 3 percent of the total number of vehicles observed, 4 percent were left turns, and 93 percent went straight through the intersection.

3.3.2.3 $79^{\text {th }}$ Street and Metcalf Avenue

The intersection of $79^{\text {th }}$ Street and Metcalf Avenue was chosen as a spillover site for the treatment intersections of $75^{\text {th }}$ Street and Metcalf Avenue. This intersection was located in a commercial area. There was a bank at the northwest corner and commercial businesses at all the other corners of the intersection. Figure 3.23 shows an aerial view of the intersection.

Figure 3.23: 79 ${ }^{\text {th }}$ Street and Metcalf Avenue Aerial View
Source: Google Earth, 2013

As shown in Figure 3.23, it was found that for northbound traffic along Metcalf Avenue, there was a left-turn lane, a through lane, and a shared right-turn/through lane. For the southbound approach there was a left-turn lane, a right-turn lane, and two through lanes. The posted speed limit along Metcalf Avenue was 35 mph . The speed limit to the west of the intersection on $79^{\text {th }}$ Street was 20 mph , while to the east the speed limit was 30 mph . For westbound traffic there was a left-turn lane and a shared through/right-turn lane. Eastbound traffic had a left-turn lane, a through lane, and a right-turn lane. The clearance path for traffic on $79^{\text {th }}$ Street was 110 feet, and was 91 feet for traffic on Metcalf Avenue. All approaches had protected/permitted left-turn movements, and no protected right turns. There were three overhead signals and one signal on the mast for the northbound and southbound movements. For the eastbound and westbound movements, there were overhead signals and one signal on the pole. It
was also found that all overhead signals have backplates. The morning and evening peak hour cycle length was 140 seconds, and only the northbound and southbound phases were coordinated. Table 3.5 shows the yellow phase and all-red phase times per approach in seconds.

Table 3.5: 79 ${ }^{\text {th }}$ Street and Metcalf Avenue Yellow and All-Red Times in Seconds

Traffic Movement	Phase	
	Yellow (seconds)	All-Red (seconds)
Northbound	3.7	1.7
Northbound Left Tum	3.2	2.1
Southbound	3.7	1.7
Southbound Left Turn	3.3	2.3
Eastbound	3.1	2.9
Eastbound Left Turn	3	2.3
Westbound	3.1	2.9
Westbound Left Tum	3.1	2

As shown in Table 3.5, the timings for all approaches were within the recommendations and guidelines found in the literature review and the MUTCD. The northbound and southbound approaches had close to 4 seconds of yellow, which was the longest yellow time for the entire intersection. This could be in part because the majority of traffic at this intersection travels along Metcalf Avenue. Figure 3.24 shows the volumes recorded during the study.

Figure 3.24: Four Hours of Peak-Period Volumes for $79^{\text {th }}$ Street and Metcalf Avenue

As shown in Figure 3.24, traffic volumes at this intersection were recorded using the intersection vehicle detector cameras. Video data were obtained for the before and 3-month after periods of the study. For the before period, the City of Overland Park was able to record all approaches on the same day. For the 3-month after period, traffic along Metcalf Avenue (in both directions) was recorded on the same day; the eastbound approach was recorded on October 29, 2013, and the westbound approach was recorded on the November 5, 2013. Also shown in Figure 3.23 was that the majority of the observed traffic volumes traveled along Metcalf Avenue.

For all periods of the study, it was observed that traffic volume would increase by approximately 1,300 from the morning peak to the evening peak. Figure 3.25 shows the turning movements observed at the intersection.

Figure 3.25: Turning Movements at $79^{\text {th }}$ Street and Metcalf Avenue for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches

As shown in Figure 3.25, the turning movement volume percentages for all study periods were combined and graphed for each approach. Over 90 percent of the northbound traffic traveled through the intersection, and over 85 percent of traffic traveled through the intersection on the southbound approach. More than 60 percent of westbound traffic traveled through the intersection, while 45 percent of eastbound traffic turned left onto Metcalf Avenue. The eastbound and westbound traffic were found to have the highest volumes of left-turning vehicles, and the southbound and eastbound were found to have the highest volume of right-turning vehicles. A total of 25,709 vehicles were observed, with vehicles making a right or left turn representing less than 10 percent of traffic, respectively.

3.3.2.4 $119^{\text {th }}$ Street and Quivira Road

The intersection of $119^{\text {th }}$ Street and Quivira Road was chosen as a spill-over site for the intersection of College Boulevard and Quivira Road. The land use around the intersection was mixed. There were apartment buildings at the northeast corner, and commercial businesses at the west side of the intersection. There was no development on the southeast corner. The posted speed limit for $119^{\text {th }}$ Street and Quivira Road was 45 mph . The eastbound, westbound, and southbound approaches had two left-turn lanes, two through lanes, and one right-turn lane. The northbound approach had one left-turn lane, two through lanes, and a shared through/right-turn movement lane. Figure 3.26 shows an aerial picture of this intersection.

Figure 3.26: 119 ${ }^{\text {th }}$ Street and Quivira Road Aerial View
Source: Google Earth, 2013

The clearance path was 135 feet for traffic on Quivira Road and 130 feet for traffic on $119^{\text {th }}$ Street. The intersection had a signal head per travel lane for all approaches. Additionally, all overhead signal heads had backplates. There were protected right turns for the southbound and eastbound approaches, and all left-turn movements were protected only. Table 3.6 shows the yellow and all-red phase signal timing in seconds.

Table 3.6: $119^{\text {th }}$ Street and Quivira Road Yellow and All-Red Times in Seconds

Traffic Movement	Phase	
	Yellow seconds)	All-Red (seconds)
Northbound	4.3	1.9
Northbound Left Tum	3.2	3
Southbound	4.3	1.9
Southbound Left Turn	3.2	3.1
Eastbound	4.3	1.9
Eastbound Left Turn	3.2	3
Westbound	4.3	1.9
Westbound Left Tumn	3.2	3

It was found that there were no coordinated phases at this intersection or a set peak-hour timing cycle. All values for the yellow and all-red timing phases were within the values recommended by researchers and the MUTCD. Figure 3.27 shows the combined morning and evening peak-hour volumes observed during all periods of the study for the intersection.

Figure 3.27: Four Hours of Peak-Period Volumes for $119^{\text {th }}$ Street and Quivira Road

As shown in Figure 3.27, it was found that similar volumes were observed for all approaches for the intersection of $119^{\text {th }}$ Street and Quivira Road. For $119^{\text {th }}$ Street, approximately 55 percent of the total volume was found to be for the eastbound approach. It was observed for the 3-month after period of the study that the highest volume was the eastbound approach. Traffic along Quivira Road was split evenly between the northbound and southbound approaches. The evening peak hours were found to have higher volume counts than the morning peak hours. Approximately 57 percent of the total volume (that is, the volume collected during the 2 hours in the morning peak and 2 hours in the evening peak) was observed during the evening peak. Figure 3.28 shows the turning movements for each approach of the intersection.

Figure 3.28: Turning Movements at $119^{\text {th }}$ Street and Quivira Road for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches

As shown in Figure 3.28, the eastbound and southbound approaches were found to have the highest percentages of left-turning vehicles at the intersection. The southbound and the westbound approaches were found to have the highest volume of right-turning vehicles. A significant percentage of the traffic was found to traverse through the intersection at all approaches. In total, approximately 47,341 vehicles were counted. Approximately 60 percent of the total number of vehicles observed traversed through the intersection, 16.6 percent of the vehicles turned left, and 17.1 percent of vehicles made a right turn.

3.3.2.5 College Boulevard and Nieman Road

The intersection of College Boulevard and Nieman Road was chosen as a spill-over site for the treatment intersection of College and Quivira. This intersection was in a mainly residential area. There were private residences in the northeast and southwest corners of the intersection. There was a church and a preschool at the northwest corner. There was no
development at the southeast corner. The posted speed limit along Nieman Road was 30 mph , while the posted speed limit along College Boulevard was 45 mph . Figure 3.29 shows an aerial photo of the intersection.

Figure 3.29: College Boulevard and Nieman Road Aerial View
Source: Google Earth, 2013

As shown in Figure 3.29, the northbound traffic along Nieman Road has one lane per movement. For southbound traffic, there was one left-turn lane, and one right-turn/through movement lane. Along College Boulevard the eastbound approach had three through lanes, one right-turn lane, and one left-turn lane. The clearance path for traffic along Nieman Road was 138 feet, and was 145 feet for traffic on College Boulevard. The northbound movement had a
protected right turn, and the left turns for northbound and southbound were permitted. Left-turn lanes for eastbound and westbound approaches were protected only. There were two signal heads for the northbound and southbound approaches, one overhead and one on the pole. For the westbound approach, there were two signal heads for the left-turn movement, two overhead signal heads for through movements, and one signal head on the pole. The eastbound approach had one signal head for the left-turn movement, two for through movements, and one on the pole. All overhead signals had backplates. Table 3.7 shows the all-red and yellow phase signal timing in seconds.

Table 3.7: College Boulevard and Nieman Road Yellow and All-Red Times in Seconds

Traffic Movement	Phase	
	Yellow seconds)	All-Red (seconds)
Northbound	3.6	3.2
Northbound Left Tum	NA	NA
Southbound	3.6	3.2
Southbound Left Tumn	NA	NA
Eastbound	4.8	1.9
Eastbound Left Tun	3.5	2.7
Westbound	4.8	1.9
Westbound Left Tum	3	3.1

The eastbound and westbound approaches were coordinated. The morning peak hour cycle length was 120 seconds, and the evening peak hour cycle length was 140 seconds. The eastbound and westbound through movements have almost 5 seconds of yellow phase time. All phase times were within the recommendations found in the literature review and the MUTCD. Video data were provided for traffic along College Boulevard only. The observed volumes for the westbound and eastbound approaches are shown in Figure 3.30.

Figure 3.30: Four Hours of Peak-Period Volumes for College Boulevard and Nieman Road

During the before period and the 1-month after period of the study, the approaches were recorded on different days. For the 3-month after period, both approaches were recorded on the same day. Over 9,000 vehicles were observed during the before and 3-month after period of the study. The 1-month had a total volume of 7,675 vehicles. Approximately 58 percent of the total volume was observed during the evening peak hours. The turning movements for the observed traffic along College Boulevard are shown in Figure 3.31.

Figure 3.31: Turning Movements at College Boulevard and Nieman Road for (a) Westbound, (b) Eastbound

As shown in Figure 3.31, the percentage of vehicles for each movement was calculated from the total volume between all three study periods. A majority of observed traffic traveled through the intersection, which was expected. The westbound approach was found to have the highest percentage of left-turning vehicles, and the eastbound was found to have the highest percentage of right-turning vehicles. In total, there were 25,873 vehicles that traveled along College Boulevard. Left-turning vehicles represented 5.6 percent of the total observed traffic at the intersection, right-turning vehicles comprised of 4 percent, and through movements comprised 90.4 percent.

3.3.2.6 College Boulevard and Pflumm Road

The intersection of College Boulevard and Pflumm Road was a spill-over site for the intersection of College Boulevard and Quivira Road. The land use at this intersection was mixed between residential and commercial. There were residences in the northwest and southeast corners of the intersection and commercial businesses in the southwest and northeast corners. The posted speed limit for all approaches was 45 mph and approaches had two left-turn lanes, two through lanes, and a right-turn lane. Figure 3.32 shows an aerial view of the intersection.

The clearance path for Pflumm Road traffic was 145 feet, and was 136 feet for College Boulevard traffic. There was one signal head per lane, all left-turn movements were protected, and all approaches had protected right turns, with all overhead signals having backplates. The eastbound and westbound cycles were coordinated. The morning hour cycle time was 120 seconds, and the evening peak hour cycle time was 140 seconds. Table 3.8 shows the yellow and all-red phase time in seconds for the intersection.

Figure 3.32: College Boulevard and Pflumm Road Aerial View
Source: Google Earth, 2013

Table 3.8: College Boulevard and Pflumm Road Yellow and All-Red Times in Seconds

Traffic Movement	Phase	
	Yellow (seconds)	All-Red (seconds)
Northbound	4.6	2.2
Northbound Left Turn	3.4	2.9
Southbound	4.6	2.2
Southbound Left Tum	3.3	2.8
Eastbound	4.4	1.9
Eastbound Left Turn	3.3	3
Westbound	4.4	1.9
Westbound Left Turn	3.2	2.9

As shown in Table 3.8, the northbound and southbound approaches had slightly longer yellow times as compared to the eastbound and westbound approaches. All values for yellow and all-red phase timing were within the guidelines and recommendations found in the literature review and MUTCD. Figure 3.33 shows the combined morning and evening peak hour volumes for each approach and combined study periods.

Figure 3.33: Four Hours of Peak-Period Volumes for College Boulevard and Pflumm Road

For the before period, traffic data for the morning peak hour were recorded on different days than the evening peak hour. For the 1-month and 3-month after period, all approaches were recorded on the same day. As shown in Figure 3.33, the westbound and eastbound traffic were found to account for 60 percent of the total volume observed at the intersection. The 1-month after period had the highest volume recorded for each approach as compared to all other periods. The evening peak accounted for approximately 54 percent of the total vehicular volume observed. Figure 3.34 illustrates the turning movements observed for the combined peak hours.

Figure 3.34: Turning Movements at College Boulevard and Pflumm Road for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches

As shown in Figure 3.34, less than half of the recorded traffic traversed through the intersection for the northbound and southbound approaches. Traffic turning off of Pflumm Road was found to predominantly travel eastbound on College Boulevard. The northbound approach was found to have the highest number and percentage of vehicles making a right turn when at the intersection. The southbound approach was found to have about 30 percent of the traffic turn left. However, it was found that the westbound approach had the highest volume of left-turning vehicles onto College Boulevard. It was also found that over 60 percent of vehicles along College Boulevard traversed through the intersection, and a large number of vehicles turned off of College Boulevard and proceeded southbound on Pflumm Road. A total of 49,071 vehicles were observed during all study periods. Vehicles making a left turn were found to be approximately 25 percent of the total volume counted, and vehicles making a right turn accounted for approximately 19 percent.

3.3.3 Control Sites

The intersections of $95^{\text {th }}$ Street and Metcalf Avenue, College Boulevard and Antioch Road, College Boulevard and Nall Avenue, 103 ${ }^{\text {rd }}$ Street and Antioch Road, $95^{\text {th }}$ Street and Antioch Road, and $103{ }^{\text {rd }}$ Street and Metcalf Avenue were used as control sites for this study. Vehicle data were recorded by the City of Overland Park for all three study periods using the overhead vehicle detection cameras at the intersections of $95^{\text {th }}$ Street and Metcalf Avenue, College Boulevard and Antioch Road, and College Boulevard and Nall Avenue. Additionally, the control intersections of $103^{\text {rd }}$ Street and Antioch Road, $95^{\text {th }}$ Street and Antioch Road, and $103^{\text {rd }}$ Street and Metcalf Avenue were recorded in the field. The following sections explain in detail these selected control intersections.

3.3.3.1 $95^{\text {th }}$ Street and Metcalf Avenue

Metcalf Avenue was the northbound and southbound approaches, and $95^{\text {th }}$ Street was the eastbound and westbound approaches for this intersection. The intersection was located in a commercial business area of town. There were office buildings in the northwest corner, and commercial businesses in all other corners of the intersection. The posted speed limit on Metcalf Avenue was 45 mph , while $95^{\text {th }}$ Street had a posted speed limit of 35 mph .

The northbound and southbound approaches of Metcalf Avenue had three through lanes, two left-turn lanes, and no right-only lanes. The eastbound and westbound approaches of $95^{\text {th }}$ Street had two left-turn lanes, two through lanes, and one right-turning lane. Figure 3.35 shows an aerial view of the intersection.

Figure 3.35: $95^{\text {th }}$ Street and Metcalf Avenue Aerial View
Source: Google Earth, 2013

The clearance path for the northbound and southbound approaches was 145 feet. For the eastbound and westbound approaches, the clearance path was 150 feet. For the eastbound and westbound approaches, there was one signal head per lane. There were a total of 12 signal heads, six per approach, a signal head mounted on the pole, as well as a signal head on the southeast corner and the northwest corner for the right-turning vehicles. Figure 3.36 shows the signal lights for all approaches.

Figure 3.36: $95^{\text {th }}$ and Metcalf (a) Eastbound, (b) Westbound, (c) Eastbound Stop Line Alignment, and (d) Southbound

For the westbound and eastbound approaches, there were no U-turns allowed for leftturning vehicles and both approaches had protected right turns. The stop lines for the left turns in the eastbound and westbound directions were approximately 28 feet back from the near-side line of the crosswalk. For the northbound and southbound approaches, there were six signal heads per approach: five on the main mast arm and pole, and one on the near side of the intersection. There were no protected right-turning movements for either approach along Metcalf Avenue, and U turns were prohibited. Left-turning movements were protected for all approaches. All overhead signal heads mounted on the mast arm had back plates. Only the northbound and southbound approaches had coordinated phases, and the morning and evening peak-hour cycle length was 140 seconds. Table 3.9 shows the yellow and all-red times in seconds for the intersection.

Table 3.9: $95^{\text {th }}$ Street and Metcalf Avenue Yellow and All-Red Times in Seconds

Traffic Movement	Phase			
	Yellow			
(seconds)				All-Red
:---:				
(seconds)	\(~\left(\begin{array}{cc}Northbound \& 4.3 			

\hline $$
\begin{array}{c}\text { Northbound } \\
\text { Left Turn }\end{array}
$$ \& 3.1

\hline Southbound \& 4.3

\hline $$
\begin{array}{c}\text { Southbound } \\
\text { Left Turn }\end{array}
$$ \& 3.2

\hline Eastbound \& 3.8

\hline $$
\begin{array}{c}\text { Eastbound } \\
\text { Left Turn }\end{array}
$$ \& 3

\hline $$
\begin{array}{c}\text { Westbound }\end{array}
$$ \& 3.8

\hline $$
\begin{array}{c}\text { Westbound } \\
\text { Left Turn }\end{array}
$$ \& 3.4

\hline\end{array}\right.\)

As shown in Table 3.9, all values for yellow phase and all-red phase were within the recommendations found during the literature review and MUTCD. Traffic moving along Metcalf Avenue was found to have the longest yellow phase time, and the shortest time for all-red for the through movement. The westbound left-turning movement had the longest yellow time and allred phase time out of all left-turning movements. The combined study period vehicular volumes are shown in Figure 3.37.

The before and the 1-month study period vehicle data along $95^{\text {th }}$ Street were recorded on different days than the data collected on Metcalf Avenue. All approaches were recorded on the same day for the 3-month after period. Metcalf Avenue was found to have a majority of the traffic volume during all periods of the study. Nearly 60 percent of the total volume observed were vehicles traversing through or turning at the intersection from Metcalf Avenue. The evening peak period was when 59 percent of the total volume was observed. Figure 3.38 shows the turning movements observed in terms of percentage.

Figure 3.37: Four Hours of Peak-Period Volumes for $95^{\text {th }}$ Street and Metcalf Avenue

Figure 3.38: Turning Movements at $95^{\text {th }}$ Street and Metcalf Avenue for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches

In terms of percentage, there was little variability between periods, therefore the charts combined all periods of the study. As shown in Figure 3.38, approximately 80 percent of all traffic observed on Metcalf Avenue traversed through the intersection. When compared to traffic along $95^{\text {th }}$ Street, Metcalf Avenue was found to have a low percentage of left- and right-turning vehicles. However, both approaches were found to have over 1,100 vehicles making a right turn and over 1,700 vehicles making a left turn when combining all study periods. The westbound approach was found to have the highest percentage of turning vehicles compared to all other approaches. A total of 4,050 vehicles were found to turn left or right at the intersection, which was 47 percent of the total number of vehicles observed at this approach. In total, there were a combined 49,618 vehicles observed at all approaches. Left-turning vehicles comprised 15 percent and right turns were 12 percent of the total volume observed.

3.3.3.2 College Boulevard and Nall Avenue

The intersection of College Boulevard and Nall Avenue was also selected as a control site. Office buildings, healthcare facilities, and hotels were within the vicinity of the intersection. The posted speed limit along College Boulevard was 45 mph . The north approach of Nall Avenue had a posted speed limit of 45 mph , while the south approach had a speed limit of 35 mph. Figure 3.39 shows an aerial view of the intersection.

The eastbound and westbound approaches of College Boulevard had two left-turning lanes, two through lanes, and a right-turning lane. The northbound and southbound approaches of Nall Avenue had three through lanes, two left-turning lanes, and a right-turning lane. All approaches had protected left-turning and protected right-turning movements. The clearance path for traffic on Nall Avenue was 155 feet, and was 175 feet for traffic on College Boulevard. The morning peak cycle length was 120 seconds, and the evening peak hour cycle length was 140 seconds. The northbound and the southbound approaches were coordinated. Table 3.10 shows the phase time in seconds for yellow and all-red.

Figure 3.39: College Boulevard and Nall Avenue Aerial View
Source: Google Earth, 2013

Table 3.10: College Boulevard and Nall Avenue Yellow and All-Red Times in Seconds

Traffic Movement	Phase	
	Yellow (seconds)	All-Red (seconds)
Northbound	4.4	2.2
Northbound Left Turn	3.2	3.1
Southbound	4.4	2.2
Southbound Left Turn	3.3	3
Eastbound	5.1	2.4
Eastbound Left Turn	3.7	3.2
Westbound	5.1	2.4
Westbound Left Turn	3	3.3

As shown in Table 3.10, the times shown for yellow phase and all-red phase were within the recommendations found during the literature review and MUTCD. The eastbound and westbound approaches along College Boulevard had the longest yellow phase time out of all approaches and movements, with 5.1 seconds. Figure 3.40 shows the traffic volumes observed during all periods of the study.

Figure 3.40: Four Hours of Peak-Period Volumes for College Boulevard and Nall Avenue

Vehicle data were collected by the City of Overland Park using overhead vehicle detection cameras. For the 1-month after period, only the morning peak hour video was obtained for the northbound and southbound approaches. Additionally, the eastbound approach had one lane closed for the through movement due to construction during the 1-month after period. The northbound and southbound approaches of Nall Avenue were found to have the highest volumes on all periods of the study, with the exception of the 1-month after period. Under normal traffic and recording conditions, there was an increase observed in the evening peak volume compared
to the morning peak. The turning movement volumes at the intersection are shown in Figure 3.41.

Figure 3.41: Turning Movements at College Boulevard and Nall Avenue for (a) Northbound (b) Southbound (c) Westbound (d) Eastbound Approaches

As shown in Figure 3.41, over 80 percent of the observed traffic on Nall Avenue traveled through the intersection. Over half of the eastbound traffic observed on College Boulevard was found to turn onto Nall Avenue. Additionally, approximately 30 percent of the total volume observed for the eastbound approach made a left turn at the intersection, which was the highest volume of left-turn movement as compared to all other approaches. The eastbound approach also had the highest percentage of vehicles making a right turn. In total, there were 47,519 vehicles recorded for all periods of the study. Left-turning vehicles represented approximately 13 percent of the total volume, right-turning vehicles represented 12 percent, and 75 percent of the vehicles observed traveled through the intersection.

3.3.3.3 College Boulevard and Antioch Road

College Boulevard and Antioch Road was selected as a control site. This intersection was located in a commercial area of town. The Corporate Woods Office Park was at the northwest corner, and commercial businesses were located at all other corners of the intersection. All intersection approaches had two left-turning lanes, three through lanes, and a right-turning lane. The posted speed limit for all approaches was 45 mph . Figure 3.42 shows an aerial view of the intersection.

Figure 3.42: College Boulevard and Antioch Road Aerial View
Source: Google Earth, 2013

It was found that the clearance path for the approaches on Antioch Road and College Boulevard was 164 feet. All approaches had four overhead signal heads and one on the pole, and a signal located on the near side of the intersection for the right-turn movement. Two signal heads were for left-turning traffic and the other three were for through and right-turn movements.

All approaches had protected right-turning and protected left-turning movements. Table 3.11 shows the time in seconds for yellow and all-red phase.

Table 3.11: College Boulevard and Antioch Road Yellow and All-Red Times in Seconds

Traffic Movement	Phase	
	Yellow seconds)	All-Red (seconds)
Northbound	4.3	2.4
Northbound Left Turn	3.2	3.3
Southbound	4.3	2.4
Southbound Left Tumn	3.1	3.4
Eastbound	4.1	2.5
Eastbound Left Turn	3	3.2
Westbound	4.1	2.5
Westbound Left Turn	3.1	3.5

The morning peak hour cycle length was 120 seconds, and the evening peak hour cycle length was 140 seconds. The yellow phase and all-red phase times were within the recommendations outlined in the literature review and MUTCD. The north and south phasing were coordinated. The volumes recorded for all periods of the study are shown in Figure 3.43.

Figure 3.43: Four Hours of Peak-Period Volumes for College Boulevard and Antioch Road

Video data were recorded by the City of Overland Park using overhead vehicle detection cameras. Video data were not obtained for the northbound approach during the 1-month after period. The morning and evening peak hours were filmed on different days for all approaches, except the westbound approach for the before period. For the 1-month after period, the southbound, westbound, and eastbound approaches were recorded in different days. The northbound and southbound approaches were recorded on the same day, and the westbound and eastbound approaches were recorded on the same day for the 3-month after period. There was a considerable increase in observed volume during the 1-month after study period for the southbound approach, which was filmed on August 20, 2013. It was found that during the 1month study, 3,119 out of the 5,532 vehicles traversed the intersection during the evening peak. Additionally, for the southbound approach during the 3-month after period, only 1 hour and 10 minutes of traffic was recorded. Traffic counts were higher during the evening peak volume. From the total volume counts for all three periods, 57 percent was observed during the evening peak hours. Figure 3.44 illustrates the turning movement percentages.

Figure 3.44: Turning Movements at College Boulevard and Antioch Road for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches

As shown in Figure 3.44, considering all approaches at the intersection, over 60 percent of the observed vehicles traversed through the intersection. It was found that between 15 and 20 percent of the observed traffic on all approaches made a right turn, and that 16 to 23 percent of the observed traffic made a left turn. Furthermore, the westbound approach had the highest percentage of turning vehicles out of all approaches. In total, there were 44,523 vehicles counted at this intersection. Left-turning vehicles accounted for 20 percent of the total volume, and rightturning vehicles account for 17 percent of the total volume.

3.3.3.4 $95^{\text {th }}$ Street and Antioch Road

The intersection of $95^{\text {th }}$ Street and Antioch Road was selected as a control site. The posted speed limit on $95^{\text {th }}$ Street was recorded as 35 mph , and the posted speed limit on Antioch Road was recorded as 35 mph . There were no right-turn-only lanes at any of the approaches at this intersection. However, each approach had a left-turn lane, one through-only lane and a
shared through/right-turn lane. This intersection was located on a dense commercial area. At the south end of the intersection there were many commercial businesses, including Walgreens and another grocery store. At the time of data collection, there was construction for a bank and other shops at the south end of the intersection. There was a gas station on the northwest corner, and a dental office on the northeast corner of the intersection. Figure 3.45 shows an aerial view of the intersection.

Figure 3.45: $95^{\text {th }}$ Street and Antioch Road Aerial View
Source: Google Earth, 2013

It was found that the clearance path for the northbound and southbound approaches was approximately 105 feet, and for the eastbound and westbound approaches was about 107 feet. For the northbound approach, the left-turning movement was protected-only; there were four signal heads, and no restrictions on U-turns. For the southbound approach, the left-turning movement was protected-only. For eastbound approach, there were four signal heads, protected left-turning movement, and no restrictions on U-turns. For the westbound approach, the leftturning movement was protected; there were four signal heads, and no restrictions on U-turns.

The signal phases on Antioch Road were coordinated. The cycle length for the morning peak hour was 120 seconds, and was 140 seconds for the evening peak. Table 3.12 shows the yellow and all-red phase times in seconds for the intersection.

Table 3.12: $95^{\text {th }}$ Street and Antioch Road Yellow and All-Red Times in Seconds

Traffic Movement	Phase	
	Yellow (seconds)	All-Red (seconds)
Northbound	3.8	2.1
Northbound Left Turn	3	2.2
Southbound	3.8	2.1
Southbound Left Turn	3.4	2.3
Eastbound	3.6	2.1
Eastbound Left Turn	3.1	2.2
Westbound	3.6	2.1
Westbound Left Turn	3.2	2.2

As shown in Table 3.12, the yellow and all-red times were within the recommendations found in the literature review and MUTCD. Drivers traversing through the intersection on Antioch Road had the longest yellow time out of all approaches and movements in the intersection. The traffic volumes at the intersection are shown in Figure 3.46.

Figure 3.46: Four Hours of Peak-Period Volumes for $95^{\text {th }}$ Street and Antioch Road

Figure 3.46 shows the combined morning and evening peak-hour volumes for each approach at each period of the study. Traffic was recorded by a researcher on May 23, 2013, for the before period, September 18, 2013, for the 1-month after period, and November 5, 2013, for the 3 -month after period. For the northbound and southbound approaches during the 1-month after study, there was a work zone present at the time of the data recording. For the northbound approach, traffic was guided to one through lane and one left-turn lane. For the southbound approach, traffic operated on one lane, but this work zone was located upstream from the intersection. At the intersection all lanes operated as normal. Overall, the before period had the highest observed volumes. A significant portion of traffic observed was traveling along $95^{\text {th }}$ Street. The highest volume for any period was observed during the before period at the eastbound approach. From the total volume count, 60 percent was observed during the evening peak hours. Figure 3.47 shows the turning movements at each approach. It should be noted that the percentages shown in Figure 3.47 have small differences between periods of the study, since
turning movements volumes are presented in terms of a percentage derived from the total volume observed from all three periods of the study.

Figure 3.47: Turning Movements at $95^{\text {th }}$ Street and Antioch Road for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches

As shown in Figure 3.47, a high percentage of traffic on Antioch Road traversed through the intersection. The northbound approach was found to have the highest percentage and the highest volume of left-turning vehicles. The eastbound approach was also found to have the highest observed volume turn right onto Antioch Road. It was also found that the westbound approach had nearly 75 percent of the observed volume travel through the intersection. There were a total of 37,633 vehicles counted at this intersection. Left-turning vehicles represented 18 percent and right-turning vehicles represented 13 percent of the total volume observed.

3.3.3.5 103 $^{\text {rd }}$ Street and Antioch Road

The intersection of $103^{\text {rd }}$ Street and Antioch Road was selected as a control site. For southbound traffic on Antioch Road, the posted speed limit was 35 mph , and for eastbound and westbound traffic on $103^{\text {rd }}$ Street, the posted speed limit was 40 mph . For the northbound and southbound approaches, there were two through lanes, one left-turning lane, and no right-turn lanes. There were no U-turns allowed for the southbound traffic. The westbound approach had a right-turning lane, a left-turning lane, and two through lanes. There were no restrictions of movement for U-turns. The eastbound approach had one through lane, a shared through/rightturning lane, and one left-turning lane. There were no prohibited movements (e.g. U-turns) for eastbound traffic. Figure 3.48 shows an aerial view of the intersection.

Figure 3.48: $103^{\text {rd }}$ Street and Antioch Road Aerial View
Source: Google Earth, 2013

The intersection was located in a residential area of town. There was a church in the southwest corner of the intersection, and housing in all other corners. The clearance path for vehicles on Antioch Road was approximately 100 feet, while for the eastbound and westbound approaches of $103^{\text {rd }}$ Street, the clearance path was 94 feet. For the westbound approach there was a protected right-turning signal, protected left-turning signal, and two through signals for a total four of signals for this approach. All signal heads that were mounted on the mast have backplates. The signal on the pole had four aspects (lenses), with the fourth aspect corresponding to the protected right turn, similar to the one noted at College Boulevard and Quivira Road. For the eastbound approach, the left-turning lane was protected and there was no signal for the right turn. There were four signals, one for left-turning lane and the rest for through movement. For the northbound approach, there were two through lanes, a left-turning lane, and no right-only turn lane. There was a bus stop by the southeast corner. There were four signal heads, no restrictions on U-turns, no protected right turn, and the left-turning movements were protectedonly. For the southbound approach, there was a protected left-turning lane only, four signal heads, and no right-only turn lane. The traffic signals at this intersection were not coordinated. Table 3.13 shows the yellow phase and all-red phase in seconds for all movements in the intersection.

Table 3.13: 103 $^{\text {rd }}$ Street and Antioch Road Yellow and All-Red Times in Seconds

Traffic Movement	Phase	
	Yellow (seconds)	All-Red (seconds)
Northbound	3.6	2
Northbound Left Turn	3.2	2.2
Southbound	3.6	2
Southbound Left Turn	3.2	2.1
Eastbound	4.1	1.7
Eastbound Left Turn	3.3	2.2
Westbound	4.1	1.7
Westbound Left Tumn	3	2.1

As shown in Table 3.13, the values for the yellow and all-red phases were within the recommendations found in the literature review and the MUTCD. The westbound and eastbound approaches had the longest yellow times and the shortest all-red times out of all movements and approaches. The volumes observed at the intersection are shown in Figure 3.49.

Figure 3.49: Four Hours of Peak-Period Volumes for $103{ }^{\text {rd }}$ Street and Antioch Road

Figure 3.49 shows the morning and evening peak-hour volumes for each approach during each study period. The intersection was recorded on May 22, 2013, for the before period, September 10, 2013, for the 1-month after period, and November 7, 2013, for the 3-month after period. It was found that a majority of traffic traveled along Antioch Road (northbound and southbound). For all periods of the study, there was an increase in volume between the morning and evening peak periods. Furthermore, it was found that the before study period had the highest volume count out of all study periods. Figure 3.50 shows the turning movements for all approaches.

Figure 3.50: Turning Movements at $103^{\text {rd }}$ Street and Antioch Road for (a) Northbound (b) Southbound (c) Westbound (d) Eastbound Approaches

As shown in Figure 3.50, it was found that over 60 percent of traffic traversed through the intersection for all approaches. The northbound approach had the highest observed volume of left- and right-turning vehicles. Approximately 25 percent of the observed traffic for the eastbound approach turned right at the intersection. Furthermore, it was found that a total of 32,358 vehicles were counted for all periods of the study. Approximately 60 percent of the total observed volume was vehicles traveling through the intersection, 18 percent were turning right, and 15 percent were turning left.

3.3.3.6 $103^{\text {rd }}$ Street and Metcalf Avenue

The intersection of $103^{\text {rd }}$ Street and Metcalf Avenue was selected as a control site. The surrounding land use was a mix of commercial and recreational. There were commercial businesses south of $103{ }^{\text {rd }}$ Street, and Pinehurst Park was located north of $103{ }^{\text {rd }}$ Street. For the southbound approach, there were three through lanes, two left-turning lanes, and one right-
turning lane. The northbound approach had three through lanes, two left-turning lanes, and one right-turning lane. For both the westbound and eastbound approaches, there were two through lanes, two left-turning lanes, and one right-turning lane. The posted speed limit for Metcalf Avenue was 45 mph , and the posted speed limit for $103^{\text {rd }}$ Street was 40 mph . There were no Uturns allowed for both northbound and westbound traffic. Southbound and eastbound traffic were allowed to make U-turns. Figure 3.51 shows an aerial view of the intersection.

Figure 3.51: 103 $^{\text {rd }}$ Street and Metcalf Avenue Aerial View
Source: Google Earth, 2013

The clearance path for northbound and southbound movements was approximately 165 feet. For the eastbound and westbound movements, the clearance path distance was 196 feet. There were six signal heads for each approach at the intersection. For the eastbound and westbound approach, there was one signal head per travel and movement lane. There was also a
signal head placed on the near side of the intersection. For the northbound and southbound approaches, there were two signal heads for the left turn, two for the through movements, and two for the through and right-turning movements, with one of the signal heads placed on the near side of the approach. Figure 3.52 shows the signal mountings for all approaches.

Figure 3.52: $103^{\text {rd }}$ and Metcalf Signals at (a) Northbound, (b) Southbound, (c) Eastbound, and (d) Westbound

As shown in Figure 3.52, all overhead signals had back plates. It was found that the only approach that did not have a protected right turn was the westbound approach. All left-turning movements were protected at the intersection. Only the north and south phases were coordinated, and the peak-hour cycle length for morning and evening was 140 seconds. The yellow and the all-red intervals in seconds are in Table 3.14.

Table 3.14: $103^{\text {rd }}$ Street and Metcalf Avenue Yellow and All-Red Times in Seconds

Traffic Movement	Phase	
	Yellow seconds)	All-Red (seconds)
Northbound	4.3	2.2
Northbound Left Turn	3.2	3.2
Southbound	4.3	2.2
Southbound Left Turn	3.2	3.2
Eastbound	3.6	3.4
Eastbound Left Turn	3.2	3.2
Westbound	3.6	3.4
Westbound Left Tumn	3.2	3.2

As shown in Table 3.14, the times for yellow and all-red were within the recommended times described in the literature review and MUTCD. Through-movement traffic along Metcalf Avenue was found to have the longest yellow phase time. The yellow and all-red time for all leftturn movements were the same for all other approaches. The volumes for each period are shown in Figure 3.53.

Traffic was observed and recorded on May 29, 2013, for the before period, and on August 28, 2013, for the 1-month after period. Video data were recorded by the City of Overland Park using overhead vehicle detection cameras for the 3-month after period. Traffic along $103{ }^{\text {rd }}$ Street was recorded on November 5, 2013, and traffic along Metcalf Avenue was recorded on November 7, 2013. As shown in Figure 3.53, over 70 percent of traffic observed at this intersection traveled on Metcalf Avenue. The 3-month after period of the study had the highest volume count of all periods of the study. More than half of the total volume was observed during the evening peak hour. Figure 3.54 shows the turning movements observed during the study.

Figure 3.53: Four Hours of Peak-Period Volumes for $103^{\text {rd }}$ Street and Metcalf Avenue

Figure 3.54: Turning Movements at $103{ }^{\text {rd }}$ Street and Metcalf Avenue for (a) Northbound, (b) Southbound, (c) Westbound, and (d) Eastbound Approaches

As shown in Figure 3.54, more than 80 percent of the traffic along Metcalf Avenue traveled through the intersection. It was found that the southbound approach had the highest number of observed vehicles making a left turn at the intersection. Additionally, the westbound approach had the highest volume of right-turning vehicles. A total of 47,878 vehicles were observed in all three periods of the study at this intersection. Left-turning vehicles comprised 13 percent of the total volume, right-turning vehicles were 11 percent, and through movements accounted for 76 percent of the total movement.

3.3.4 Summary

As stated in the previous sections, a total of 14 intersections were used to investigate the effectiveness of the confirmation lights. From the 14 selected intersections, two treatment sites, six spillover sites, and six control sites were identified. Intersection geometry and lane configurations differed between sites as noted in each description. Both treatment intersections were located in commercial areas of town. Most of the spillover sites were in residential areas, and most of the control sites were in commercial areas. Out of 56 possible approaches investigated, 42 of these approaches had a protected left-turning movement present, eight approaches had protected/permitted left-turning movements, and four had permitted left-turning movements. It was also noted that only 15 approaches had a protected right-turning movement. The signal timing at all studied intersections for yellow and all-red phases were found to be within the recommendations that were detailed in the literature review and current guidance. All intersections were equipped with a single signal head per lane, and all overhead signal heads had black backplates. There were a total of 563,997 vehicles observed through all periods of the study. Figure 3.55 shows how the volumes were noted between treatment, spillover, and control sites.

Figure 3.55: Volumes for All Periods Between Sites

As shown in Figure 3.55, there was a decrease in volume observed during the 1-month after period. This was due to missing video data. Overall, the spillover sites experienced lower volumes than the control sites. The treatment sites had left-turning vehicles representing 15 percent of the total volume, 14 percent of the total volume were right-turning vehicles, and 71 percent of the total volume observed were vehicles proceeding through intersection. It was found that the intersections with the highest vehicle volume counts were College Boulevard and Quivira Road, College Boulevard and Pflumm Road, and $95^{\text {th }}$ Street and Metcalf Avenue.

Chapter 4: Data Collection and Methodology

A before-and-after violation study was conducted to determine the effectiveness of the blue confirmation lights at two signalized intersections in Overland Park, Kansas. The easiest way to obtain and reduce RLR violation data was using video data on each approach of an intersection. However, capturing and reducing traffic video data using video cameras can be complicated and time consuming. The City of Overland Park was consulted about using permanently-installed overhead vehicle detector cameras located at all of the intersections. Even though vehicle detection cameras were located at all of the identified intersections, Overland Park was unable to record digital video at some intersections, so portable field data collection equipment was used when needed. Figure 4.1 shows the view of the overhead video provided by the camera.

Figure 4.1: Overhead Camera View of an Intersection Approach

As shown in Figure 4.1, a view of the intersection in which a single approach could be monitored was of interest in the data collection process. As stated in the previous section, almost all of the intersections under investigation had multiple turning movements, including a protected/permitted right-turning lane. The field of view also needed to view the approach stop line and current phase of the traffic signal. As shown in Figure 4.1, the recorded field of view by the vehicle detection cameras show the stop line, the vehicles, and path traveled. At the lower corners of the image were the current phase for the through (left) and left-turning movements (right). However, the field of view and the associated signal images did not indicate when rightturning vehicles had either a protected or permitted right turn. It was assumed that if an intersection had a protected/permitted left turn, the signal display would indicate red for left turns, but the through movement would remain green. In order to avoid confusion when the data were reduced, student researchers were required to become familiar with the intersection signal operations prior to reducing the video data. A total of five intersections were found to not have the capabilities of utilizing vehicle detection cameras to collect data. Therefore, a student researcher setup multiple video cameras at these intersections and recorded the data. When data were collected using ground-based cameras, the field of view that was required of the student researcher was shown in Figure 4.2.

Figure 4.2: Camera View of an Intersection Approach

As shown in Figure 4.2, the camera setup had to be deployed close enough to the intersection that the stop line could be visible, and far enough away so the field of view could capture all of the approach lanes. Additionally, all signal heads had to be clearly visible in the field of view. This was complicated at some locations due to the rising sun in the morning and early nighttime conditions at the end of the evening peak hour. Commonly available video equipment was used for data collection, as shown in Figure 4.2.

Figure 4.3: Equipment Used for Field Data Collection Effort

As shown in Figure 4.3, high definition video cameras were used in conjunction with an extended battery and inverter. An important aspect of the data collection effort was deploying and monitoring the video camera equipment at all four intersection approaches, while not affecting driver behavior with the presence of the student researchers or equipment. Prior to any video data collection effort, the City of Overland Park Police Department dispatch center was notified to facilitate driver or business curiosity. A common setup of the ground-level video equipment is illustrated in Figure 4.4.

Figure 4.4: Camera Setup at an Intersection

Student researchers in the field were instructed to setup the video equipment in a safety vest and then monitor the cameras at the intersection during both peak hours from a vehicle parked nearby. All video data were collected on a Tuesday, Wednesday, or Thursday to minimize the likelihood of unusual traffic patterns (e.g., a holiday or special event that might alter traffic). Data were also collected during the identified morning peak hour (7a.m. to 9 a.m.) and evening peak hour (4 p.m. to 6 p.m.). The data collection methodology described was used for all study periods of the project. The dates on which video data were collected in Overland Park included the following:

- Before study: January 16 to May 29, 2013;
- Confirmation Light Installation: July 2, 2013;
- 1-month after study: August 7 to September 19, 2013; and
- 3-month after study: October 23 to November 14, 2013.

Collecting video data at each intersection required a substantial amount of time, as shown by the dates listed. A quality assurance protocol was developed to ensure the field collected data met the field of view requirements as stated previously.

4.1 Data Reduction

A total of 583 hours of video data were reduced, resulting in over 2 terabytes of high definition video. Video data were reduced manually by student undergraduate research assistants and all red light violations noted by the assistant were verified. The methodology ensured accurate video data reduction, which resulted in a substantial archive of RLR violations and signalized intersection operational data. Assistants reduced each peak hour for each intersection with scheduled breaks in the reduction process. The following guidelines were given to each assistant to reduce the video data:

- A vehicle that proceeded through (or crosses the stop line), or made a left turn after the red signal was shown was considered a RLR violation.
- A vehicle that crossed the stop line during the yellow interval, or was in the intersection when the signal shows yellow or red was not considered a RLR violation (e.g. permitted left turns).
- If a vehicle ran a red light, then the video was stopped, and scrolled back to determine the time into red the vehicle ran the red light.
- If a vehicle ran a red light, the video time stamp at which the event occurred was recorded.
- While monitoring one approach at a time for RLR violations, record the traffic volume for each turning movement.

Illustrated in Figure 4.5 is the template that was distributed to the students who reduced the video data.

Figure 4.5: Sample of Reduced Video Data

As shown in Figure 4.5, the primary data of interest was the number of vehicles that ran the red light (number of violations), time into red (seconds), which approach the violation occurred at, and the time of day the violation occurred (a.m. or p.m. peak hour). Additionally, the turning movement counts were recorded for each approach in the same data reduction sheet.

Once the assistant completed an entire intersection (all four approaches), the sheet was turned in to perform a quality check/assurance. At this point, each of the recorded violations was reviewed to ensure a RLR violation occurred and the required information was noted accurately. Once the entire data collection effort was completed, data were aggregated into archival format as a Microsoft Excel file.

4.2 Data Collection and Reduction Limitations

Collecting field data can sometimes result in unknown and complicating events. These situations often complicated the data collection and reduction efforts:

- During the data collection over the duration of the project, Kansas weather brought rain, wind, sleet, and snow. Either the data collection effort was shut down early, or, in the case of wind, the equipment was readjusted to ensure continuous data collection (e.g. plastic bags or chain tie-downs).
- Since the research project utilized commonly available video recording and power source equipment, limitations on equipment reliability were found to be an issue during some data collection periods. This included malfunctioning batteries, overloaded inverters, or unresponsive cameras. Identified equipment failures were noted either in the field or during the data reduction process. If the failure affected the quality or quantity of the video data, a recollection effort occurred as quickly as possible.
- At many intersection sites, pedestrians passing by the camera setup were found to tamper with the units.

4.3 Installation of Confirmation Lights

The light used was a Pelco confirmation light, which ranges from $\$ 110-\$ 140$ depending on the mounting bracket. As shown in Figure 4.6, the City of Overland Park specified that they wanted the light to be mounted by a cable Pelco Astro-Brac. Also shown in Figure 4.6, excess cable and wire were zip-cord strapped to the mast arm and sign bracket. The Pelco confirmation light came in multiple colors, including blue, red, and clear. A standard Edison light bulb was used and the plastic dome was sealed by a rubber weather strip. The confirmation light came with a short three strand wire which included a ground wire. The Overland Park traffic signal technicians removed the provided wire and attached a standard two-wire hookup.

Since the traffic signal controller cabinet and signal heads were low-powered with LED lights, the city asked to find the brightest low-powered light bulb, because conventional 65 watt incandescent bulbs would trip the intersection battery backup system. Three LED light bulbs were purchased from a local hardware store and it was decided to use an 800 Lumens 9 watt LED light bulb.

On the July 2, 2013, at approximately 9 a.m., the City of Overland Park Traffic Engineering Department installed the confirmation lights at $75^{\text {th }}$ Street and Metcalf Avenue intersection and then at College Boulevard and Quivira Road. Figure 4.6 shows how the city installed the lights using a boom truck.

Figure 4.6: Field Installation of the Confirmation Light

4.4 Public Awareness of the Confirmation Lights

Prior to installation and activation of the confirmation lights at both intersections, the City of Overland Park consulted with the city and county traffic judges, as well as the city and county prosecutors, so that unintentional confusion would not occur if the court system saw the words "blue light" on a RLR citation.

The University of Kansas and the City of Overland Park public relations offices were consulted to jointly release a statement regarding the project. A copy of the press release can be found in the Appendix. The coordinated press release was designed to inform drivers that a change was going to occur at two intersections, and a different color was going to be present besides red, yellow, and green. The press release was also designed to show a commitment to intersection safety and reducing RLR by the all parties involved. Shown in Figures 4.7 and 4.8 are the blue confirmations lights at $75^{\text {th }}$ Street and Metcalf Avenue and at College Boulevard and Quivira Road, respectively.

While it was not the intent of this research project to incorporate a public awareness campaign, it was realized by the research team that there was no realistic way to keep the news media from reporting on these new devices in their area. It was decided to have one uniform response at the beginning of the project, so that when asked by media outlets the correct information could be relayed to the public. There was no concerted effort to 'get the word out,' and after the initial inquiries by the media, there were no follow-up efforts by the research team to make use of the press release material.

Figure 4.7: Confirmation Lights at $75^{\text {th }}$ Street and Metcalf Avenue

Figure 4.8: Confirmation Light at College Boulevard and Quivira Road

Additionally, the research project was spotlighted by local television and newspaper media. A photo of a KU researcher answering questions by the local media is shown in Figure 4.9.

Figure 4.9: Project Investigator Meeting with the Media at a Treatment Intersection

It should be noted that the effectiveness of the public awareness campaign was not evaluated as part of this study. Additionally, it was specifically asked of the Overland Park Police Department to continue their regular duties monitoring RLR and to avoid targeted enforcement during the study period.

Chapter 5: Comparison of Violation Rates After Confirmation Light Installation

5.1 Background

Studies that have assessed the effectiveness of a roadway safety device rely ideally on a before-and-after crash analysis. These studies involve at least three years of before data and three years of after data (Nicholson, 1985). However, many communities want to know the effectiveness of a device or treatment shortly after installation to determine if the investment in the device was a good decision. Many times, in place of a before-and-after crash analysis, researchers will use a safety surrogate measure in place of crash data.

Researchers have previously used the reduction in RLR violations as a crash surrogate for a reduction in RLR crashes. This relationship was directly due to the fact that RLR violations occur more frequently than RLR crashes, since they are rare and random events. Research has also shown that red light runners tend to have common traits, such as age, driving experience, speed convictions, and vehicle type (Retting \& Williams, 1996). However, a reduction in violations means there was a reduction in exposure, or a reduction in the chances for a RLR crash to occur.

Additionally, besides considering a change in RLR violations before and after the confirmation lights were installed, the change in violations 3 months after installation was investigated. Unlike previous research studies, it was unknown if the confirmation lights (or really any safety countermeasure) become less effective over time, as drivers become accustomed to the treatment and associated enforcement. However, changes in driver behavior or changes in enforcement using the confirmation lights may be more effective over time.

5.2 Methodology

The RLR violation rate was the metric used to compare changes during the before period, 1 month after, and 3 months after installation of the confirmation lights. Violation rate was used instead of the number of violations to account for varying intersection volumes (exposure). The RLR rate was expressed in 10,000 entering vehicles, as shown in Equation 5.1.

$$
\text { Rate }(T E V)=\frac{N_{i}}{V_{i}} \times 10,000 \text { Entering Vehicle }
$$

Equation 5.1

Where:
$N_{i}=$ total number of violations (N) observed during the study period i; and
$V_{i}=$ total number of entering vehicles (V) during the study period i.
Once a violation rate was determined for each data collection period, changes in the violation rates were determined using Equation 5.2.

$$
\text { Change (\%) }=\frac{\hat{\pi}_{i}-\hat{\pi}_{b}}{\hat{\pi}_{b}} \times 100 \%
$$

Equation 5.2

Where:
$\hat{\pi}_{b}=$ violation rate for before period; and
$\hat{\pi}_{i}=$ violation rate for after period.
To compare the calculated rates for the before period, 1 month after, and 3 months after installation of the confirmation lights, a test of proportions was used to determine if the changes in rate were statistically significant. Equation 5.3 was used to perform this step of the analysis.

$$
Z=\frac{\left(\hat{\pi}_{b}-\hat{\pi}_{i}\right)}{\sqrt{\frac{\hat{\pi}_{b}\left(1-\hat{\pi}_{b}\right)}{V_{b}}+\frac{\hat{\pi}_{i}\left(1-\hat{\pi}_{i}\right)}{V_{i}}}}
$$

Equation 5.3

Where:
Z = z-test statistic;
$\hat{\pi}_{b}=$ violation rate for before period;
$\mathrm{Vb}=$ volume for before period;
$\hat{\pi}_{i}=$ violation rate for after period i ; and
$\mathrm{Vi}=$ volume for after period i.

The calculated z-test statistic was compared to a Z table with $\alpha=0.05$ to determine significance at the 95 percent level of confidence. If the Z was greater than 1.96 , the resulting decrease in violation rate was statistically significant. Similarly, if the Z was less than -1.96 the resulting increase in violation rate was statistically significant.

5.3 Results for Change in Red Light Running Violations

The results of the violation study for all intersections are presented in this section. As stated previously, the confirmation lights were installed at two intersections for the left-turning movement and through movements. The change in violations was evaluated for left-turning movements and through movements separately, and the results are presented in the following sections.

5.3.1 Analysis of Left-Turning Movement Red Light Running Violations

Table 5.1 shows the results of the analysis for the left-turning movements only. The morning and evening peak-hour data were combined. The table shows the intersection, RLR violations recorded, RLR rates per 10,000 vehicles, and percent change in violation rates between periods. For the percent change in violation rates, a dot represents periods of the study where there were no data obtained. A total change in RLR rates was the average rate for the treatment site, spillover sites, and control sites.

Table 5.1: Results of the RLR Violation Analysis for Left-Turning Movements

	Number of Violations			Violation Rate per 10,000 vehicles			Percent Change	
Treatment Sites	Before	1-Mont	Month	Before	1-Month	3-Month	1-Month	3-Month
$75^{\text {th }}$ Street and Metcalf Avenue	27	-	19	108.56	-	77.55	-	-29\% ${ }^{\text {A }}$
College Boulevard and Quivira Road	27	55	29	62.27	129.66	73.07	$108 \%{ }^{\text {A }}$	$17 \%{ }^{\text {A }}$
Total	54	55	48	79.14	129.66	74.78	64\% ${ }^{\text {A }}$	-6\% ${ }^{\text {A }}$
Spillover								
$71^{\text {st }}$ Street and Metcalf Avenue	4	6	5	34.16	44.05	42.41	29\% ${ }^{\text {A }}$	24\% ${ }^{\text {A }}$
$75^{\text {th }}$ Street and Conser	2	2	6	74.63	78.74	202.7	6\%	172\% ${ }^{\text {A }}$
$79^{\text {th }}$ Street and Metcalf Avenue	1	0	2	8.58	-	16.53	-	93\% ${ }^{\text {A }}$
119th Street and Quivira Road	6	8	6	23.95	31.03	21.7	$30 \%{ }^{\text {A }}$	-9\% ${ }^{\text {A }}$
College Boulevard and Nieman Road	9	1	2	165.14	25.32	39.45	-85\% ${ }^{\text {A }}$	-76\% ${ }^{\text {A }}$
College Boulevard and Pflumm Road	9	20	9	22.97	48.05	22.47	109\% ${ }^{\text {A }}$	-2\%
Total	31	37	30	32.38	42.28	30.11	$31 \%^{\text {A }}$	-7\% ${ }^{\text {A }}$
Control Sites								
$95{ }^{\text {th }}$ Street and Metcalf Avenue	8	21	15	34.53	81.59	58.41	$136 \%{ }^{\text {A }}$	69\% ${ }^{\text {A }}$
College Boulevard and Nall Avenue	6	14	17	28.4	70.85	73.56	$150 \%{ }^{\text {A }}$	$159 \%{ }^{\text {A }}$
College Boulevard and Antioch Road	5	15	4	16.66	54	13.69	224\% ${ }^{\text {A }}$	$-18 \%{ }^{\text {A }}$
$95^{\text {th }}$ Street and Antioch Road	21	16	9	81.05	83.38	37.78	3\%	-53\% ${ }^{\text {A }}$
$103{ }^{\text {rd }}$ Street and Antioch Road	8	1	3	42.8	6.27	21.02	-85\% ${ }^{\text {A }}$	-51\% ${ }^{\text {A }}$
$103{ }^{\text {rd }}$ Street and Metcalf Avenue	7	14	7	33.61	69.9	33.57	$108 \%{ }^{\text {A }}$	0\%
Total	55	81	55	39.36	63.06	40.16	60\% ${ }^{\text {A }}$	2\%

${ }^{\mathrm{A}}$ Change in violation rate is statistically significant at the 95 percent level of confidence

As shown in Table 5.1, overall the confirmation lights showed inconclusive results at the treatment intersections/approaches for left-turning movements. The intersection of $75^{\text {th }}$ Street and Metcalf Avenue experienced a significant reduction of left-turning RLR violations 3 months after the confirmation lights were installed. The treatment site of College Boulevard and Quivira Road experienced a significant increase of left-turning RLR violation rate after the confirmation lights were installed. At College Boulevard and Quivira Road, the largest increase in RLR violations was experienced during the 1-month after period of the study. There was also a significant increase in left-turning RLR violations at the spillover sites and the control sites for the 1-month after period of the study.

During the 1-month after period of the study, the treatment intersection site of College Boulevard and Quivira Road, the spillover site of College Boulevard and Pflumm Road, and the control sites of $95^{\text {th }}$ Street and Metcalf Avenue, College Boulevard and Nall Avenue, College Boulevard and Antioch Road, and $103^{\text {rd }}$ Street and Metcalf Avenue all experienced an increase of over 100 percent in the RLR violation rate. Traffic was recorded for all the listed intersections between August 15 and 18, 2013. The intersection of $119^{\text {th }}$ Street and Quivira Road was also recorded in August, and it was the only intersection to not experience an increase of over 100 percent in the RLR violation rate; however, the calculated increase of 30 percent was statistically significant. The remaining control and spillover intersections were recorded in September. Considering all the intersections, there was a significant increase in left-turning RLR violations at the treatment, spillover, and control sites. This suggests that the increase in violations was due to other factors, and not the installation of the blue confirmation lights. Further analysis of College Boulevard and Quivira Road is documented in a later section.

Three months after the confirmation lights were installed, it was found that there was a global decrease in left-turn red light violations at the treatment sites based on data collected from the control intersections. The treatment intersection of $75^{\text {th }}$ Street and Metcalf Avenue experienced a decrease of 29 percent, which was found to be significant for left-turning red light violations when compared to the before period. The intersection of College Boulevard and Quivira Road experienced an increase in RLR violation rate when compared to the before period. However, the increase during this period was found to be less than the increase observed
during the 1-month after period, and there was a significant decrease in RLR violation rate between the 1 -month after period and the 3-month after period. The spillover intersection sites experienced an overall decrease in left-turning RLR violations. All spillover intersection sites adjacent to the intersection of $75^{\text {th }}$ Street and Metcalf Avenue experienced a significant increase, while all spillover sites near the intersection of College Boulevard and Quivira Road experienced a decrease in violation rate for left-turn movements. During the 3-month after period of the study, there was an overall increase (2 percent) of violations for all control sites. However, this global increase was found to be not statistically significant. The intersections of College Boulevard and Nall Avenue, College Boulevard and Antioch Road, and $95^{\text {th }}$ Street and Metcalf Avenue saw a significant increase in left-turning RLR violation rates. The intersections of $95^{\text {th }}$ Street and Antioch Road and $103{ }^{\text {rd }}$ and Antioch Road experienced a significant decrease in violation rates.

5.3.2 Analysis of Through Movement Red Light Running Violations

Table 5.2 shows the results of the analysis for the through movements only. Morning and evening peak-hour data were combined. The table shows the intersection, RLR violations recorded, RLR rates per 10,000 vehicles, and percent change in violation rates between periods. For the percent change in violation rates, a dot represents that no data were available for that intersection at that time period.

Table 5.2: Results of the RLR Violation Analysis for Through Movements

	Number of Violations			Violation Rate per 10,000 vehicles			Percent Change	
Treatment Site	Before	1-Mon	Month	Before	1-Month	3-Month	1-Month	3-Month
$75{ }^{\text {th }}$ Street and Metcalf Avenue	11	-	14	7.31	-	9.46	-	$29 \%{ }^{\text {A }}$
College Boulevard and Quivira Road	7	17	7	4.61	10.22	4.53	$122 \%{ }^{\text {A }}$	-2\%
Total	18	17	21	5.95	10.22	6.94	72\% ${ }^{\text {A }}$	17\% ${ }^{\text {A }}$
Spillover								
$71^{\text {st }}$ Street and Metcalf Avenue	15	22	10	12.09	17.14	7.86	42\% ${ }^{\text {A }}$	-35\% ${ }^{\text {A }}$
$75^{\text {th }}$ Street and Conser	32	10	15	45.52	16.35	21.99	-64\% ${ }^{\text {A }}$	-52\% ${ }^{\text {A }}$
$79^{\text {th }}$ Street and Metcalf Avenue	9	-	8	7.91	-	6.69	-	-15\% ${ }^{\text {A }}$
119th Street and Quivira Road	8	5	6	6.45	3.74	4.38	-42\% ${ }^{\text {A }}$	$-32 \%{ }^{\text {A }}$
College Boulevard and Nieman Road	1	1	1	1.18	1.37	1.16	17\% ${ }^{\text {A }}$	-1\% ${ }^{\text {A }}$
College Boulevard and Pflumm Road	5	4	1	4.26	3.02	0.83	$-29 \%{ }^{\text {A }}$	-80\% ${ }^{\text {A }}$
Total	70	42	41	11.03	7.94	6.23	-28\% ${ }^{\text {A }}$	-44\% ${ }^{\text {A }}$
Control Sites								
$95^{\text {th }}$ Street and Metcalf Avenue	8	10	11	5.93	6.98	7.67	18\% ${ }^{\text {A }}$	29\% ${ }^{\text {A }}$
College Boulevard and Nall Avenue	1	5	8	0.65	5.14	5	692\% ${ }^{\text {A }}$	671\% ${ }^{\text {A }}$
College Boulevard and Antioch Road	2	7	2	1.57	6.85	1.55	$335 \%{ }^{\text {A }}$	-1\%
$95^{\text {th }}$ Street and Antioch Road	11	18	11	9.95	18.38	11.11	85\% ${ }^{\text {A }}$	$12 \%{ }^{\text {A }}$
$103{ }^{\text {rd }}$ Street and Antioch Road	10	6	3	10.18	6.51	3.8	-36\% ${ }^{\text {A }}$	-63\% ${ }^{\text {A }}$
$103{ }^{\text {rd }}$ Street and Metcalf Avenue	6	8	5	4.65	5.79	3.34	25\% ${ }^{\text {A }}$	$-28 \%{ }^{\text {A }}$
Total	38	54	40	5.04	8.05	5.26	60\% ${ }^{\text {A }}$	4\% ${ }^{\text {A }}$

${ }^{\mathrm{A}}$ Change in violation rate is statistically significant at the 95 percent level of confidence

The confirmation light had little effect for through-movement violations at the

 treatment sites. At College Boulevard and Quivira Road, there was a significant increase in violation rate of over 120 percent from the before period to the 1-month after period. During the 1-month after period of the study, there was an overall decrease in violation rate for spillover sites. Only the intersections of $71^{\text {st }}$ Street and Metcalf Avenue and College Boulevard and Nieman Road experienced a significant increase in through-movement violations. All other intersections experienced a significant decrease in violation rates, with $75^{\text {th }}$ Street and Conser Street and $119^{\text {th }}$ Street and Quivira Road experiencing the biggest decreases. A significant increase for all control sites was observed during the 1-month after period. The control sites of College Boulevard and Nall Avenue and College Boulevard and Antioch Road experienced the highest increases in violation rates. The intersection of $103^{\text {rd }}$ Street and Antioch Road was the only control site that experienced a decrease in through-movement violation rate during the 1 month after period of the study.For the 3-month after period, the treatment sites experienced an overall significant increase in through-movement RLR violation rates. The site at $75^{\text {th }}$ Street and Metcalf Avenue had a significant increase during this period. The spillover sites near $75^{\text {th }}$ Street and Metcalf Avenue experienced a significant decrease in violation rates, with the highest decrease found at $75^{\text {th }}$ Street and Conser Street. College Boulevard and Quivira Road experienced a small decrease in through violations. All spillover sites near College Boulevard and Quivira Road experienced a decrease in violation rates, with the highest decrease observed at College Boulevard and Pflumm Road. Globally, there was a significant decrease at the spillover sites.

In total, a significant increase was observed during the 3-month after period of the study for all control sites. Only the intersections of $103{ }^{\text {rd }}$ Street and Antioch Avenue and $103{ }^{\text {rd }}$ Street and Metcalf Avenue experienced a statistically significant decrease in through-movement violation rate. The intersections of College Boulevard and Nall Avenue and $95^{\text {th }}$ Street and Metcalf Avenue experienced the highest significant increase in through-movement violations. When comparing violation periods, the volumes of through- and right-movement violations were at their peak at College Boulevard and Quivira Road when volume was the highest. At all spillover sites, the highest decrease was observed when volumes were highest. For control sites, when the volumes were the highest, the increases in violation rates were the lowest. To further clarify which approaches at the treatment sites experienced an increase in violations during the 1month after period, an analysis of violations per approach and time of day is described in Section 5.3.3

5.3.3 Violation Analysis for Treatment Sites

For all periods of the study, a total of 231 RLR violations were recorded at both treatment intersections. To further investigate the possible effects of the confirmation lights and the increase of violations at these sites, the time of day and the approach on which the violations occurred were analyzed. The following section presents the RLR violations per movement, according to approach and peak period when they occurred. Table 5.3 shows the violations for left-turning movements at both treatment sites.

Table 5.3: Left-Turn Violations at Treatment Sites.

Study Period	Approach	75th Street and Metcalf Avenue		College Boulevard and	
		Morning	Evening	Morning	Evening
Before	Northbound	2	3	3	7
	Southbound	2	1	6	-
	Eastbound	8	4	3	5
	Westbound	-	7	3	-
One Month	Northbound	-	-	3	4
	Southbound	-	-	10	1
	Eastbound	-	-	14	12
	Westbound	-	-	2	9
Three Month	Northbound	1	2	1	4
	Southbound	-	3	5	1
	Eastbound	8	4	4	10
	Westbound	-	1	2	2

As shown in Table 5.3, left-turning RLR violations represented 157 out of the 231 total violations at the treatment sites. The intersection of College Boulevard and Quivira Road was found to have the most left-turning violations with 111. When compared to the total number of RLR violations at the intersection of College Boulevard and Quivira Road between the periods of this study, there were 34 violations observed during the before period, 55 during the 1-month after period, and 29 total left-turn violations during the 3-month after period.

Approximately 50 percent of the violations for left-turning vehicles at College Boulevard and Quivira Road were observed during the 1-month after deployment period of the study. Approximately 29 out of 55 RLR violations were observed during the morning peak hour. It should be noted that during the 2-hour morning peak hour in the 1-month after period, there were the same number of left turn violations as found during the whole 3-month after period of the study. The eastbound approach was found to have the highest number of left-turn violations on all approaches at College Boulevard and Quivira Road. Left-turning (eastbound) traffic proceeded northbound on Quivira Road towards Interstate 435. During the 1-month after period, the southbound and westbound approaches experienced 11 violations, respectively, for both the morning and evening peak hours. The southbound approach experienced a decrease from 10 violations in the morning peak hour to one violation in the evening peak hour. The westbound
approach experienced an increase in violations from two violations in the morning peak hours to nine in evening peak hours for this period of the study.

Comparing the different approaches between study periods showed that three out of four approaches experienced the highest number of violations during the 1-month after period at College Boulevard and Quivira Road. The northbound approach of College Boulevard and Quivira Road experienced a decrease through all periods of the study. During the 3-month after period, the eastbound approach experienced the highest number of violations for all approaches, and similar results were observed during the 1 -month after period. At the intersection of $75^{\text {th }}$ Street and Metcalf Avenue, the eastbound approach experienced the highest number of leftturning RLR violations for the before and 3-month after period. This intersection also saw a decrease in left-turning RLR violations from 27 in the before period to 19 in the 3-month after period. Table 5.4 shows the recorded volumes for left-turning movements at the treatment sites.

Table 5.4: Left-Turn Volumes at Treatment Sites

Study Period	Approach	75th Street and Metcalf Avenue		College Boulevard and Quivira Road	
		Moming	Evening	Morning	Evening
Before	Northbound	213	246	385	576
	Southbound	319	276	810	560
	Eastbound	349	371	462	677
	Westbound	322	309	303	563
One Month	Northbound	-	-	419	514
	Southbound	-	-	691	525
	Eastbound	-	-	540	685
	Westbound	-	-	255	613
Three Month	Northbound	307	296	357	440
	Southbound	302	323	567	473
	Eastbound	315	273	502	660
	Westbound	360	356	359	611

At $75^{\text {th }}$ Street and Metcalf Avenue, there was a decrease in total violations even though there was an increase in left-turning traffic. For the before period, the eastbound and westbound approaches had the highest number of vehicles turning left at the intersection. Also, in the before period of the study, the eastbound approach had the highest volume and left-turn violations out
of all approaches. The eastbound approach had the highest left-turn violations during the 3month after period; however, the westbound approach had the highest volume and lowest total violations during that period. In addition, the northbound approach experienced an increase in left-turning volume, and a decrease in total violations. The southbound approach experienced an increase in volume from the before period to the 3 -month after period, but no change in total violations.

At College Boulevard and Quivira Road, left-turning traffic decreased at each subsequent period of the study. For all periods observed, the eastbound and southbound approaches had the highest left-turning volumes.

The eastbound approach experienced a peak in left-turn movements during the 1-month after period, which consequently was when the highest total violations were observed. Overall, left-turning volumes were lower in the morning peak hours than the evening peak period. The southbound approach was the only approach that experienced a decrease in left-turning movements from morning peak to evening peak. Table 5.4 shows that the southbound movement also experienced a decrease in violations from the morning peak to the evening peak. The eastbound approach experienced an increase in volume from the morning peak to the evening peak.

In summary, there was no consistent relation between volume and total violations when comparing morning and evening peak hours. However, it can be noted that traffic approaches with the highest combined morning and evening left-turn traffic counts had the most violations. The following table shows the number of violations for the through movements at the treatment sites.

Table 5.5: Through-Movement Violations at the Treatment Site

Study Period	Approach	75th Street and Metcalf Avenue		College Boulevard and	
		Morning	Evening	Morning	Evening
Before	Northbound	2	2	3	-
	Southbound	1	-	-	1
	Eastbound	-	3	3	-
	Westbound	1	2	-	-
One Month	Northbound	-	-	1	1
	Southbound	-	-	2	3
	Eastbound	-	-	7	-
	Westbound	-	-	-	3
Three Month	Northbound	3	1	2	1
	Southbound	-	1	2	-
	Eastbound	1	6	-	1
	Westbound	2	-	-	1

There were a total of 25 through-movement violations at $75^{\text {th }}$ Street and Metcalf Avenue, and 31 through-movement violations at College Boulevard and Quivira Road for all periods of the study. When comparing between periods of the study at College Boulevard and Quivira Road, there were seven violations during the before period, 17 violations during the 1-month after period, and seven violations during the 3-month after period of the study. During all periods of the study, most of the through-movement violations were observed during the morning peak hours at College Boulevard and Quivira Road. During the before period, the eastbound and northbound approaches had the highest violations. The eastbound approach had the highest violations at the 1-month after period. All seven violations observed during the 1-month after period at the eastbound approach occurred during the morning peak hours. The violations observed in the eastbound approach during this period of the study equal the total violations observed during the before-study period and the total violations observed during the 3-month after period. At $75^{\text {th }}$ Street and Metcalf Avenue, most of the violations were observed during the evening peak hours. The northbound approach had the highest number of violations in the before period and the eastbound approach had the highest violations for the 3-month after period. When comparing violations between approaches, the northbound and southbound approaches experienced the same total number of through violations. For the westbound approach, through-
movement violations decreased by one violation from the before period to the 3-month after period. The eastbound approach experienced an increase in through violations from three violations in the before period to seven violations in the 3-month after period. Volume fluctuations for each approach are shown in Table 5.6.

Table 5.6: Through-Movement Volumes at Treatment Sites

Study Period		Approach	75th Street and Metcalf Avenue		College Boulevard and Quivira Road	
		Morning	Evening	Morning	Evening	
Before	Northbound	2,238	2,339	2,376	1,918	
	Southbound	2,157	2,769	1,877	3,200	
	Eastbound	1,047	1,556	1,493	1,630	
	Westbound	1,422	1,521	805	1,895	
One Month	Northbound	-	-	2,518	1,838	
	Southbound	-	-	2,394	3,625	
	Eastbound	-	-	1,850	1,529	
	Westbound	-	-	951	1,933	
Three	Northbound	2,120	2,547	2,663	1,957	
	Southbound	2,260	2,728	1,959	3,059	
	Eastbound	1,016	1,227	1,132	1,565	
	Westbound	1,347	1,549	996	2,137	

Table 5.6 shows the combined through and right-turn volumes for each approach. At both intersections, there was an increase in volume from the morning peak to the evening peak hour during all periods of the study. However, the approach with the highest volume did not have the highest number of violations. For example, the eastbound approach at $75^{\text {th }}$ Street and Metcalf Avenue during the 3-month after period and the eastbound approach at College Boulevard and Quivira Road during the before and 1-month after period have a low total volume count but some of the highest total violations when compared to other approaches. When comparing morning peak to evening peak hours at $75^{\text {th }}$ Street and Metcalf Avenue, there was an increase in volume and violations from the morning to evening peak. The opposite was observed at College Boulevard and Quivira Road. It must be noted that although the eastbound approach during the 1-month after period had the second lowest total volume from all approaches, it had a higher volume in the morning peak than the evening peak hours, and all violations were observed in the
morning peak hours. There were 18 right-turn violations that were recorded for eastbound traffic at College Boulevard and Quivira Road. This was the only approach where right-turn violations were studied because of the "no turn on red" signal that was described in Section 3.3.1. However, these violations were not taken into account when performing a statistical analysis because the study did not take into account right turns.

For the violation study, it was found that the 1-month after period of the study at College Boulevard and Quivira Road found a violation rate much higher than the before and 3-month after period of the study. The violation rate in the 3 -month after period was not as high as the 1 month after period, indicating that the increase was not due to the confirmation lights, but due to other factors. When looking at the violations per approach, the eastbound and southbound approaches had the highest number of violations during this period. This could be due in part to students attending Johnson County Community College, since classes started on the $19^{\text {th }}$ of August and the intersection was recorded on the $27^{\text {th }}$ of August. Morning peak volumes were lower than evening peak volumes; however, more violations were observed in the morning peak hours, indicating that volume may not be a factor. The confirmation lights can help targeted enforcement at this intersection by reducing the number of officers needed. In addition, the confirmation lights can assist in enforcing left turns, which was where most violations were observed.

Chapter 6: Time into Red Analysis

6.1 Background

An important aspect to a vehicle running a red light is how far into the red cycle the violation occurred. Violations found within the all-red time (generally 1 to 2 seconds) are most likely due to a driver caught in the intersection indecision zone or a driver at the end of a platoon who intentionally runs the red light. The indecision zone of an intersection is an area prior to the stop line where the driver is unsure if he or she should brake or proceed through the intersection during the yellow phase.

However, drivers that enter the intersection past the all-red phase create a more hazardous situation, particularly as the conflicting movement has a green light. Hallmark, Oneyear, and McDonald (2011) stated that drivers that run a red light late into the red phase are more likely unintentional and involve a distraction, impairment, or fatigue. Hallmark et al. (2011) also found when evaluating RLR cameras in Cedar Rapids, Iowa, that over 120 violations occurred from zero to less than 1 second into the red phase, while over 60 violations occurred 25 seconds into the red phase during a pre-ticket evaluation period of seven intersection approaches. Another research study found that 95 percent of RLR violations occur in the first 2 seconds of the red phase (Beeber, 2011).

As explained in detail in the previous chapter, the effectiveness of the confirmation light system was investigated by determining if the change in RLR violations was statistically significant before and after the confirmation light installation. Effectiveness of the confirmation light system was also extended into investigating the change of the time into red for violations captured by the video data.

6.2. Methodology

The time into red was evaluated similar to the previous chapter, where the treatment intersections were compared to the spillover and control intersections for three study periods (before, 1 month after installation, and 3 months after installation). Time into red was plotted where the x -axis was the number of violations and the y -axis was time into red (in seconds). Violations were aggregated in the y-axis for seconds with a maximum time plotted of greater
than 5 seconds. It should be noted that, as stated in the previous section, the number of violations in each study period changed, so the total number of violations plotted in the following figures is not a consistent number for each study period.

6.3 Results

6.3.1 Left-Turning Movement

Figures 6.1, 6.2, and 6.3 show the results of the RLR time into red for the left-turning movement for all of the intersections studied. Figure 6.1 shows the left-turning movement time into red for the two treatment intersections.

Figure 6.1: Left-Turning Movement Time into Red at Treatment Intersections

Figure 6.2: Left-Turning Movement Time into Red at Spillover Intersections

Figure 6.3: Left-Turning Movement Time into Red at Control Intersections

As shown in Figure 6.1, most of the violations occurred less than 1.5 seconds after the onset of the red light at the treatment sites. The before period of the study observed two violations with a time into the red of over 2 seconds. One violation took place at $75^{\text {th }}$ Street and Metcalf Avenue, where a westbound driver turned left 3 seconds into the red. The other occurrence took place at College Boulevard and Quivira Road, where a northbound vehicle made a U-turn 48 seconds into the red. During the 1-month after period of the study, there was an
increase in violations around 2 seconds into the red and violations of over 2 seconds into the red. All four violations that occurred over 2 seconds into the red took place at College Boulevard and Quivira Road. All four violations happened 3 seconds into the red. One was observed during the morning peak and three were observed during the evening peak. There were no violations of over 2 seconds into the red during the 3 -month after period.

Figure 6.2 shows the left-turning movement time into red at the spillover intersections adjacent to the two treatment intersections. Most of the violations at the spillover sites occurred within 1 second into the red. The spillover sites had more violations after 2 seconds into the red than the treatment sites. The range of time into the red for over 2 seconds was 3 to 154 seconds. College Boulevard and Nieman Avenue had the most violations of over 2 seconds into the red with a total of five.

Figure 6.3 shows the left-turning movement time into red at the control intersections. Similar to the previous two figures, most of the RLR violations occurred within 1 second into the red. At the control sites, there were a total of 13 violations that occurred over 2 seconds into the red, which was more than the spillover sites. The intersections of $103^{\text {rd }}$ Street and Antioch Road and $103{ }^{\text {rd }}$ Street and Metcalf Avenue had four violations each of over 2 seconds into the red. Violations of over 2 seconds occurred in the range of 3 to 192 seconds into the red.

6.3.2 Through Movement

Figures 6.4, 6.5, and 6.6 show the time into red for the through-movement violations at all of the intersections studied. Figure 6.4 shows the through-movement violations' time into red for the two treatment intersections.

Figure 6.4: Through Movement Time into Red at Treatment Intersections

Figure 6.5: Through Movement Time into Red at Spillover Intersections

Figure 6.6: Through Movement Time into Red at Control Intersections

As shown in Figure 6.4, most of the through-movement violations occurred within 1 second into the red at the treatment intersections. Other violations were found to occur between 1.5 and 2 seconds into the red. There were no violations of over 2 seconds into the red for any of the study periods at the treatment sites.

Figure 6.5 shows the through-movement RLR violations at the spillover intersections. Similar to the treatment intersections in Figure 6.4, most of the through-movement violations occurred within 1 second into the red. There were three violations that took place over 2 seconds into the red. One occurrence took place at $75^{\text {th }}$ Street and Conser Street, and the other two violations took place at $79^{\text {th }}$ Street and Metcalf Avenue. The time into the red for these violations was between 3 and 4 seconds.

Similar to Figures 6.4 and 6.5, the control intersections saw many through-movement violations occurring within 1 second into the red phase, indicating that RLR violations were likely intentional. The control sites had four total violations that took place over 2 seconds into the red. The range in time into the red was 3 to 66 seconds. The intersection of $95^{\text {th }}$ Street and Antioch Road was where two of these incidents were observed.

6.3.3 Incidents over Two Seconds into the Red

There were a total of 36 violations that occurred over 2 seconds into the red. Twenty-nine were left-turning violations and seven were through movements. This section describes some of the events for violations over 2 seconds into the red. Only events over 50 seconds are described.

6.3.3.1 $95^{\text {th }}$ Street and Metcalf Avenue, 51 Seconds into the Red

Figure 6.7: Through Movement Violation at $95^{\text {th }}$ Street and Metcalf Avenue

At $95^{\text {th }}$ Street and Metcalf Avenue, a northbound vehicle crossed the intersection 51 seconds into the red. Figure 6.7a shows a car already stopped past the stop line and another car approaching the intersection. The grey car that was pulling up on the through lane next to the dual left-turn lanes was the driver that committed the violation. As shown in Figure 6.7b, all vehicles at the northbound approach were stopped as traffic along $95^{\text {th }}$ Street traveled through the
intersection. After there was no more traffic traveling along $95^{\text {th }}$ Street, the driver crossed the intersection during the all-red interval, before southbound left-turning traffic started crossing the intersection, as shown in Figures 6.7c and 6.7d. Figure 6.8 shows a violation at College Boulevard and Nieman Road.
6.3.3.2 College Boulevard and Nieman Road, 154 Seconds into the Red

Figure 6.8: Eastbound Left Turn Violation at College Boulevard and Nieman Road

Figure 6.8 shows a left-turn violation observed during the before period at College Boulevard and Nieman Road. An eastbound driver making a left turn crossed the intersection 154 seconds into the red during the morning peak hours. Figure 6.8 a shows that the left lane was cleared and the platoon of through vehicles had cleared the approach. The through and right-turn movements had the green light, and the left-turn movement was on the red phase. Figure 6.8b
shows the driver approach the intersection on the left lane along with a platoon. Figures 6.8c and 6.8d show that the driver did a rolling stop, and once there was a gap in oncoming traffic, the driver proceeded to turn left.

6.3.3.3 College Boulevard and Nieman Road, 131 Seconds into the Red

A similar occurrence to the previously mentioned violation was observed during the evening peak at this period of the study. A driver was waiting on the left-turn lane for most of the red cycle, and when the driver saw a gap, the vehicle turned left 131 seconds into the red.

Figure 6.9: Westbound Violation at College Boulevard and Nieman Road

Figure 6.9 shows a violation recorded in the before period of the study at westbound College Boulevard and Nieman Road. The violation was observed during the morning peak
period. Figure 6.9a shows westbound traffic waiting at the intersection for the green light. The video shows that, when the through movement was given a green light, a vehicle from the back of the queue drove onto the left-turn lanes as pictured in Figure 6.9b. The driver approached the intersection while driving in both left-turn lanes (Figure 6.9c) and then the vehicle proceeded to make a left turn as seen in Figure 6.9d while the left-turn signal was red. Another violation at this approach was seen in the afternoon. Figure 6.10 shows the violation.

6.3.3.4 College Boulevard and Nieman Road, 52 Seconds into the Red

Figure 6.10: Afternoon Violation at College Boulevard and Nieman Road

As pictured in Figure 6.10a, there were two vehicles in the far left lane. The protected left-turn movement was on the red phase, and through movements had the green light. Figure 6.10b shows that the first driver started to turn left and crossed the stop line 46 seconds into the
red. As shown in Figures 6.10c and 6.10d, the first car in the queue made the left turn and then the second vehicle stopped at the stop line and then proceeded to turn left 52 seconds into the red.

Figure 6.11: Violation 66 Seconds into the Red at $95^{\text {th }}$ Street and Antioch Road

At $95^{\text {th }}$ Street and Antioch Road, an eastbound vehicle ran the red light 66 seconds into the red. Figure 6.11a shows the eastbound and westbound left-turn movements turning at the intersection and the through movement at the red phase. After the last left-turning vehicle turned left, the first vehicle in the right through lane drove through the intersection, therefore jumping the red light as seen in Figure 6.11b. This was not due to distraction or inattention, but rather the driver blatantly crossed the intersection. A violation that could be due to inattention is shown in Figure 6.12.
6.3.3.6 $95^{\text {th }}$ Street and Antioch Road, 57 Seconds into the Red

Figure 6.12: Violation at $95^{\text {th }}$ Street and Antioch Road 57 Seconds into the Red

At $95^{\text {th }}$ Street and Antioch Road, a driver crossed the intersection 57 seconds into the red. As shown in Figure 6.12a, all movements for the northbound approach were on the red phase. The vehicle on the left through lane traveled through the intersection as soon as the left-turn arrow was green, as seen in Figure 6.12b. This situation could be attributed in part to driver inattention.
6.3.3.7 $103{ }^{\text {rd }}$ Street and Antioch Road, 82 Seconds into the Red

(a)

(b)

Figure 6.13: Violation at $103{ }^{\text {rd }}$ Street and Antioch Road 82 Seconds into the Red

At $103^{\text {rd }}$ Street and Antioch, there was another driver that made a left turn 82 seconds into the red. The eastbound approach traveling along $103^{\text {rd }}$ Street was on the green phase for all movements, while the westbound approach was in all-red for all movements. Figure 6.13a shows
that the vehicle arrived at the intersection and was the only vehicle on the approach. After oncoming traffic crossed the intersection and there were no more oncoming vehicles, the driver made a left turn onto southbound Antioch Road. This case could be due to driver inattention, since the driver could have assumed that the lights were green for all approaches. It could also be due to a blatant disregard of the traffic signal.

Figure 6.14: Violation at $103{ }^{\text {rd }}$ Street and Antioch Road 192 Seconds into the Red

At the eastbound approach of $103^{\text {rd }}$ Street and Antioch Road, a left-turning vehicle ran the red light 192 seconds into the red of the left-turn cycle. The driver waited at the approach for 192 seconds (Figure 6.14a) and after the through movements were cleared, the driver did not wait any longer and crossed the intersection as pictured in Figure 6.14b. The driver could have been impatient or had an assumption the arrow would never turn green.

Many factors contributed to violations over 2 seconds into the red. The examples described show that early departure for the through movement does occur at urban intersections. There were drivers who were willing to cross the intersection during the all-red cycle or they looked for a gap in opposing traffic to cross the intersection. Distracted driving or disregard for the traffic signal was also observed. It is worth noting that all examples given were violations that occurred over 50 seconds into the red, and all examples were observed at control or spillover intersections and not at treatment intersections. The majority of this type of violation was observed during the morning peak hours and they were mostly left-turning vehicles.

6.4 Summary

An important aspect to a vehicle running a red light is how far into the red cycle the violation occurred. Violations found within the all-red time (generally 1 to 2 seconds) are most likely due to a driver caught in the intersection indecision zone or a driver at the end of a platoon who intentionally runs the red light. As shown in this chapter, the great majority of the RLR instances recorded occurred within 1.5 seconds of the onset of red, regardless of the vehicle path (turning or through) or of the intersection type (treatment, spillover, or control). From a trend analysis of graphs presented in Figures 6.1 through 6.6, the presence of the confirmation lights did not change the distribution of when RLR events occurred after the onset of red.

Chapter 7: Statistical Model and Discussion

As a part of this research study, a statistical model was developed from the traffic data recorded. The goal of the model was to understand how RLR behavior changes according to the traffic volume, peak period, and intersection geometry. A second goal of the model was to measure the significance and the impact of the countermeasure employed during this project. The variables under consideration are listed, in no particular order:

- Violations
- Period of the study
- Traffic movement (through or left-turn movement)
- Time (a.m. vs. p.m.)
- Lane volume
- Movement volume
- Total approach volume
- Total lanes for traffic movement
- Total lanes for the intersection approach
- Yellow-phase timing
- Red-phase timing
- Right-turn lane present at the approach
- Clearance path
- Speed limit for the approach
- Presence of confirmation lights

The variable "violations" is the dependent variable and it represents the total violations observed at one approach, per movement, according to the peak period. The variable "period" refers to the period of the study when the violation took place. Period of the study was coded according to the period of time that the countermeasure was in place; it was coded as 0 for the before period and 1 for 3 months after. Traffic movement refers to the movement of the vehicle running the red light; it was coded as 0 for left and 1 for through movement. The variable "time" indicates whether the violation took place in morning (0) or evening (1) peak period. Lane
volume is the volume of the lane that the violation occurred in at the time of violation. Movement volume is the total volume of all lanes for a particular movement. Approach volume is the total volume (left turns, through, and right turns) observed at a specific approach of an intersection. The variable "total lanes for traffic movement" refers to the lanes designated for a specific movement at the approach. The approach lanes are all the travel lanes for a certain approach. Yellow- and red-phase timing variables are the times shown in the intersection description section. The presence of a right-turn lane was coded as 0 for no right-turn lane at the approach, and 1 if there was a right-turn lane at the approach. Clearance path is the distance between the stop lines measured in feet, and the posted speed limit for each approach was referred to as the variable "speed limit" in the model. Presence of confirmation lights was coded as 0 when there was no confirmation light installed and 1 when there was a confirmation light installed. Because there were traffic data recorded during the before period and the 3-months after period for both treatment sites, 1-month after data for all intersections are omitted from the statistical model.

The nature of reducing the traffic data was to count the number of vehicles and the number of RLR violations. Since the number of violations was a count from the number of vehicles observed, a count regression model such as Poisson or Negative Binomial could be used to model the data set. The Poisson distribution requires that the mean equals the variance. When the mean and the variance are not equal, the data are overdispersed and the Negative Binomial distribution can be used to account for that overdispersion (Washington, Karlaftis, \& Mannering, 2010). Table 7.1 shows the descriptive statistics of the available variables for the model.

Table 7.1: Model Variable Statistics

Variable	Mean	Std Dev.	Minimum	Maximum	Variance
Period of Study	0.49	0.5	0	1	0.25
Traffic Movement	0.52	0.5	0	1	0.25
Time of Day	0.55	0.49	0	1	0.25
Lane Volume Movement Volume	500.58	366.49	15	1,723	$134,315.41$
Approach Volume	$2,056.78$	891.82	96	4,700	$795,341.67$
Movement Lanes	1.91	0.59	1	3	0.35
Approach Lanes	4.26	1.43	1	6	2.04
Yellow Phase	3.59	0.48	3	4.8	0.23
Red Phase	2.45	0.61	1.4	3.5	0.38
Right Lane Presence	0.57	0.49	0	1	0.25
Path Length	131.08	33.62	70	196	$1,130.39$
Speed Limit	39.59	5.85	20	45	34.17
Total Violations	2.42	2.23	1	17	4.95
Confirmation Light	0.12	0.33	0	1	0.11

As shown in Table 7.1, RLR violations have a mean of 2.42 violations per peak period per movement and a variance of 4.95 violations per peak period per movement. Because of the overdispersion, a negative binomial distribution was used to model the data. The program SAS (Statistical Analysis System) was used to calculate the coefficients of the model. The "countreg" procedure was used in SAS, which gives the log-likelihood for the model. Table 7.2 shows the parameter estimates for all variables.

Table 7.2: Negative Binomial Model Results with All Variables

Parameter Estimates					
Parameter	DF	Estimate	Standard Error	t-Value	Approx Pr>t
Intercept	1	2.568	0.97	2.65	0.0081
Period	1	-0.248	0.116	-2.14	0.0322
Traffic Movement	1	-0.556	0.269	-2.07	0.0386
Time	1	0.131	0.116	1.13	0.2578
Lane Volume	1	0.0004	0.0004	0.89	0.371
Movement Volume	1	0.0003	0.0002	1.27	0.2043
Volume	1	-0.0001	0.0001	-1.07	0.2845
Movement Lanes	1	0.258	0.229	1.12	0.2618
Approach Lanes	1	-0.046	0.136	-0.34	0.7332
Yellow Phase	1	-0.572	0.291	-1.97	0.0491
Red Phase	1	-0.025	0.205	-0.12	0.9022
Right Turn Lane	1	-0.248	0.191	-1.3	0.1939
Path Length	1	-0.0006	0.004	-0.13	0.8949
Speed	1	0.008	0.019	0.43	0.6651
Confirmation Lights	1	0.402	0.1176	2.29	0.0223
Dispersion	1	0.135	0.043	3.17	0.0015

Table 7.2 shows the estimates, standard error, t -value, and p -value associated with each parameter. The dispersion of the dependent variable was significant at the 95 percent level of confidence, showing that the Negative Binomial model was more appropriate than a Poisson model. The log-likelihood for this model is -374.18 . The results showed that the only variables that were significant at the 95 percent confidence level were:

- Period of the study;
- Traffic movement;
- Yellow time; and
- Confirmation lights.

To determine the reasons why only four variables were significant, a linear correlation procedure was performed to find if any dependencies between variables existed. At first, the volume counts for lane, movement, and approach volume were tested to each other. Table 7.3 shows the Pearson Sample Correlation and p-value for each variable.

Table 7.3: Linear Correlation Between Volumes

Variable	With Variable	Sample Correlation	p-Value
Lane Volume	Movement Volume	0.90934	$<.0001$
Lane Volume	Volume	0.34081	$<.0001$
Movement Volume	Volume	0.43092	$<.0001$

As shown in Table 7.3, there was a significant linear correlation between all volumes. The correlation coefficient was positive between all variables, meaning that an increase in one variable translates to an increase in the other variable. In other words, an increase in lane volume led to an increase in movement volume, and an increase in movement volume lead to an increase in approach volume. This meant that only one volume variable should be selected. In order to determine if there were any other correlations between variables, all variables were tested for correlations using the SAS correlation procedure. Table 7.4 shows some of the correlation results.

Table 7.4: Correlation Results Between Variables

Variable	With Variable	Sample Correlation	p-Value
Period	Volume	0.5925	0.3968
Volume	Red	0.10122	0.1469
Time	Period	-0.01408	0.8407
Lane Volume	Speed	-0.05874	0.4009
Movement Volume	Approach Lanes	0.04341	0.535
Movement Volume	Right Turn	-0.0494	0.4799
Movement Volume	Path	-0.01072	0.1243
Movement Lanes	Red	0.07851	0.2612
Yellow	Right Turn	0.0917	0.1891
Yellow	Path	0.0773	0.2686
Traffic Movement	Time	-0.0569	0.4159
Traffic Movement	Volume	-0.05777	0.4088
Traffic Movement	Period	-0.06268	0.3701
Time	Lane Volume	0.09086	0.1932
Time	Movement Volume	0.0652	0.3511
Time	Movement Lanes	-0.00888	0.8991
Time	Approach Lanes	0.03965	0.571
Time	Yellow	-0.02145	0.7593
Time	Red	0.04256	0.543
Time	Right Turn	0.0199	0.7762
Time	Path	0.0009	0.9895
Time	Speed	0.003	0.9656

Table 7.4 only shows the variables that were not correlated. In summary, most of the variables were correlated to each other. It is worth noting that none of the variables in the model were linearly correlated to RLR violations. In order to select an appropriate model, a stepwise regression procedure was performed. The procedure chose the variables according their ChiSquare score. Table 7.5 shows the initial analysis of variables.

Table 7.5: Stepwise Analysis for Parameters Eligible for Entry

Analysis of Effects Eligible for Entry			
Effect	DF Score Chi-Square Pr>ChiSq		
Period of Study	1	0.382	0.5365
Traffic Movement	1	1.2909	0.2559
Time of Day 1 1.1359 0.2865 Lane Volume Movement Volume 1 1.4397 0.2302 Approach Volume 1 0.5692 0.4506 Movement Lanes 1 0.2071 0.649 Approach Lanes 1 0.5037 0.4779 Yellow Phase 1 2.1703 0.1407 Red Phase 1 0.0139 0.906 Right Lane Presence 1 2.607 0.1064 Path Length 1 0.4071 0.5234 Speed Limit 1 0.0446 0.8328 Confirmation Light 1 0.3794 0.5379\quad1		0.3399	

In the stepwise procedure, it was specified that a variable had to be significant to the 70 percent level to enter the model, and be significant to the 85 percent level to stay in the model. These numbers were chosen because less than half of the variables were found to fit the criteria. As shown in Table 7.5, five out of the 14 variables in the model were eligible for entry in the function. These variables were:

- Traffic movement;
- Time of day;
- Lane volume;
- Yellow time; and
- Right-turn lane presence.

Table 7.6 shows the parameters selected by the procedure.

Table 7.6: Stepwise Procedure Results

Step							
	Entered	Removed	Number	Score In Chi- square	Wald Chi- Square	Pr>Chi- Square	
$\mathbf{1}$	Right turn		1	1	2.607		0.1064
$\mathbf{2}$	Traffic Movement		1	2	2.5641		0.1093
$\mathbf{3}$	Lane Volume		1	3	8.7299		0.0031
$\mathbf{4}$	Yellow		1	4	1.3681		0.2421
$\mathbf{5}$		Yellow	1	3		1.372	0.2415

The variables that were selected for the best model were yellow time, lane volume, presence of a right-turn lane, and traffic movement. A negative binomial regression was run again using these four variables. Table 7.7 shows the parameter estimates results obtained from SAS.

Table 7.7: Negative Binomial Regression Results

Parameter Estimates					
Parameter	DF	Estimate	Standart Error t Value	Approx Pr>t	
Intercept	1	1.805451	0.623124	2.9	0.0038
Traffic Movement	1	-0.395143	0.196357	-2.01	0.0442
Lane Volume	1	0.000804	0.000207	3.88	0.0001
Yellow	1	-0.282142	0.2025	-1.39	0.1635
Right Turn	1	-0.246621	0.1156	-2.13	0.0329
Alpha	1	0.159988	0.045559	3.51	0.0004
Log Likelihood					-380.28934
Number of Iterations					

Table 7.7 shows the parameter estimates for the variables in the model. According to the model, motorists that traveled through the intersection were less likely to run the red light than left-turning motorists. The higher the lane volume, the more likely it is that a violation will be observed. The presence of a right-turn lane reduces the likelihood of a red light violation. Alpha refers to the dispersion of the dependent variable (violations). From this model, only the yellow-
phase time is not significant to the 95 percent level of confidence. Table 7.8 shows the reduced model with the yellow timing variable omitted.

Table 7.8: Negative Binomial Regression Model Results

Parameter Estimates					
Parameter	DF Estimate	Standart Error \mathbf{t} Value		Approx Pr>t	
Intercept	1	0.950672	0.114121	8.33	<0.0001
Traffic Movement	1	-0.569004	0.154733	-3.68	0.0002
Lane Volume	1	0.000737	0.000202	3.64	0.0003
Right Tum	1	-0.302303	0.108615	-2.78	0.0054
Alpha	1	0.162293	0.045938	3.53	0.0004

Log Likelihood	-381.26149
Number of Iterations	10

In order to estimate the goodness of fit of the model found in Table 7.8, the likelihood ratio test statistic was used. The test used the log-likelihood of the unrestricted model (-374.18) and the log-likelihood of the restricted model (-381.26149) to calculate a Chi-squared scored. The degrees of freedom for the Chi-squared score statistic were 11, which is the difference in number of variables between the unrestricted model and the restricted model. The likelihood ratio test statistic yielded a Chi-squared score of 14.16. This score suggests that there was not enough evidence to reject the fit of the reduced model. The McFadden pseudo R-squared value for this model was 0.27 . The sign convention for each parameter remained the same. The model from the data obtained follows the equation:

$$
V=e^{(0.95-0.57(t m)+.00074(l v)-.302(r t))}
$$

Equation 7.1

Where:
$v=$ violations;
$t m=$ traffic movement (0 for left, 1 for through);
$\mathrm{lv}=$ lane volume; and
$r t=$ right-turn lane (0 for no right-turn lane at approach, 1 for right-turn lane present).

According to Equation 7.1, if there was no volume, RLR violations would still be observed. Because this observation is not in accordance with actual field observations, a reduced model is presented to account for when there are no cars on the road, as shown in Equation 7.2.

$$
V=e^{(-0.57(t m)+.00074(l v)-.302(r t))}-1
$$

Equation 7.2

In Equation 7.2, if all variables are zero, the violations will equal zero, therefore reflecting field conditions. Discussion about general findings and interpretation of the model are presented in Chapter 8.

Chapter 8: Discussion and General Findings

Vehicles running the red light at signalized intersections continue to be a significant safety concern for many communities. A possible result of a red light running violation can be a serious right-angle crash if conflicting traffic is not aware of the violating vehicle. Many communities rely on traditional enforcement practices to monitor dangerous intersections for red light running violators. The process involves targeted enforcement, many times with multiple police officers having to watch both the traffic movement and signal. Many communities have turned to automated enforcement as a way to enforce red light running and studies have shown a positive impact on safety, but such programs have opposition in the court system and, perhaps more importantly, in the court of public opinion which influences political decisions. Low-cost engineering countermeasures (both self-enforcing and aiding law enforcement) are another alternative to help in reducing red light running violations. Confirmation lights have been installed in multiple communities in the United States; however, a literature search indicated that limited data has quantified the effectiveness of this common countermeasure.

This research study investigated blue confirmation lights at two busy intersections in Overland Park, Kansas. The two intersections selected for treatment were determined by the research team, working directly with the City of Overland Park Traffic Engineering Department and the Overland Park Police Department. Along with determining two treatment intersections, the research team identified spillover intersections next to the treatment intersections to determine if the confirmation lights affected RLR nearby. Also, control intersections were identified within the City of Overland Park, but far from the treatment intersections or corridor under investigation. Blue confirmation lights were installed for the left-turning movement and through movement at both intersections.

Traditionally, effectiveness of a safety countermeasure is performed by investigating 3 years of before crash data and 3 years of after crash data. Since the research project was limited by time and the City of Overland Park wanted to know effectiveness shortly after installation, the research team performed a before-after RLR analysis. Confirmation light effectiveness would be determined by either a decrease or increase in red light running violations, which would equate
to a possible reduction or increase in red light running crashes based on exposure. Video data were collected in the field prior to the confirmation light installation in July 2013, 1 month after installation, and 3 months after installation to determine short-term and long-term effectiveness.

Considering the left-turning movement, the findings depended on the time period selected for analysis. There were no data for $75^{\text {th }}$ Street and Metcalf Avenue for 1 month after installation, while at College Boulevard and Quivira Road there was an increase of 108 percent in left-turn violations 1 month after installation. However, the treatment intersections overall saw a 6 percent reduction in violations 3 months after installation (a 17 percent increase at College Boulevard and Quivira Road and a 29 percent reduction at $75^{\text {th }}$ Street and Metcalf Avenue). This reduction was statistically significant at the 95 percent level of confidence. The spillover sites saw a 31 percent increase in left-turn violations 1 month after installation and a 7 percent reduction in violations after 3 months. Both results were significant to the 95 percent confidence level. The control sites saw a 60 percent increase in left-turn violations 1 month after installation, which was statistically significant, and a 2 percent increase in violations 3 months after installation, which was not statistically significant. Based on the control sites, the City of Overland Park saw a global increase in left-turning movement red light running violations.

Considering only the through movement at the treatment intersections, the research team found a 72 percent increase 1 month after, and a 17 percent increase in violations for the 3 month study (statistically significant at the 95 percent level of confidence). Similarly, at the spillover intersections, the research team found a 28 percent reduction (statistically significant) in violations 1 month after installation and a 44 percent reduction in violations (statistically significant at the 95 percent level of confidence) 3 months after installation. The research team saw a 60 percent increase (statistically significant) 1 month after installation and a 4 percent increase (statistically significant at the 95 percent level of confidence) 3 months after installation. Based on the control sites, the City of Overland Park saw an overall increase in throughmovement red light running violations 1 and 3 months after the confirmation light installation.

The research team also investigated the changes in the time into red for both the leftturning and through movements during each of the three study periods. Many of the violations captured by the video data showed that drivers intentionally ran the red light as the violation
occurred within 1 second after the onset of red, with the rest mainly occurring in the all-red phase or shortly after. The research team also captured red light runners entering the intersection after 2 seconds, indicating that the driver unintentionally ran the red light, or was distracted in the process. Overall, the research team saw very little change in the time into red after the installation of the countermeasure, indicating that this countermeasure did not change driver behavior when the violation occurs. Drivers did not use the confirmation lights to traverse the intersection during the all-red cycle. Other factors, such as driver distraction and blatantly running the red light, were likely bigger factors for such behavior.

The statistical model found that the confirmation lights had no significant effects on RLR behavior, because it showed that lane volume, traffic movement, and the presence of a right-turn lane were significant factors that affected RLR violations. According to the developed model, left-turning traffic movements can be expected to have a higher number of RLR violations than through movements. This result coincided with the observed data because more than half of the violations observed were left-turning vehicles. Increases in lane volume led to an increase in violations in the statistical model. During the data reduction process it was observed that an increase in volume also led to an observed increase in RLR violations. The presence of a rightturn lane was found to decrease the number of violations in the model. This behavior was not noted during the data reduction process. There were few occasions where a vehicle behind a right-turning motorist performed an overtaking maneuver and ran the red light.

The confirmation light has the potential to be an effective low-cost countermeasure for targeted enforcement. In an anecdotal discussion with a police officer after a meeting, it was mentioned that the lights at $75^{\text {th }}$ and Metcalf Avenue were used on occasion and were helpful in enforcement. The study found that RLR violations have a peak in the month of August. Intersections that were recorded toward the end of August saw a significant increase in both leftturn and through-movement violations. Targeted enforcement during the month of August could be more efficient at intersections equipped with the confirmation lights. It was also mentioned in the conversation that officers had a difficult time using the confirmation lights at College Boulevard and Quivira Road. The intersection of College Boulevard and Quivira Road experienced an increase of over 100 percent in RLR violation rate. This intersection is equipped
with confirmation lights and could assist in targeted enforcement by reducing the number of police officers needed, and enabling effective enforcement of left-turning movements. However, visibility of the light during daylight hours and the vertical curvature for the northbound approach made it hard for the officers to use the confirmation lights when enforcing RLR. Based on the results of the study, it is recommended that the confirmation light be installed at intersections that have a history of RLR, and where officers are able to pull over and utilize the confirmation lights for enforcement.

References

AAA Foundation for Traffic Safety. (2014). 2013 Traffic safety culture index. Washington, DC: Author.

Are red light cameras making Kansas City streets safer? (2012, January 24). KSHB 41 Action News. Retrieved November 15, 2013, from http://www.kshb.com/news/local-news/are-red-light-cameras-making-kansas-city-streets-safer

Beeber, J. (2011). Safer streets in Los Angeles: Why engineering countermeasures are more effective than photo enforcement in reducing red-light related crashes. Retrieved May 2014, from http://saferstreetsla.org/reports/

Bonneson, J.A., \& Zimmerman, K.H. (2002). Engineering countermeasures to reduce red-lightrunning (FHWA/TX-03/4027-2). College Station, TX: Texas Transportation Institute, Texas A\&M University System.

Bonneson, J.A., \& Zimmerman, K.H. (2004). Red-light-running handbook: An engineer's guide to reducing red-light-related crashes (FHWA/TX-05/0-4196-P1). College Station, TX: Texas Transportation Institute, Texas A\&M University System.
City finds red-light cameras yield scant revenue. (2010, December 28). KSHB 41 Action News. Retrieved November 14, 2013, from http://www.kshb.com/news/state/missouri/city-finds-red-light-cameras-yield-scant-revenue

Cunningham, C.M., \& Hummer, J.E. (2004). Evaluating the use of red light running photographic enforcement using collisions and red light running violations. Raleigh, NC: Institute for Transportation Research and Education, North Carolina State University.

Federal Highway Administration (FHWA). (n.d.). Red-light running fatalities (2000-2009). Retrieved March 19, 2014, from http://safety.fhwa.dot.gov/intersection/redlight/data/rlr_fatal/

Federal Highway Administration (FHWA). (2005). Red light camera systems operational guidelines (FHWA-SA-05-002). Retrieved from http://safety.fhwa.dot.gov/intersection/redlight/cameras/fhwasa05002/fhwasa05002.pdf

Federal Highway Administration (FHWA). (2009). Manual on uniform traffic control devices for streets and highways (MUTCD). Washington, DC: U.S. Department of Transportation.

Federal Highway Administration (FHWA). (2010). Retroreflective borders on traffic signal backplates: A South Carolina success story (FHWA-SA-09-011). Retrieved from http://safety.fhwa.dot.gov/intersection/resources/casestudies/fhwasa09011/fhwasa09011. pdf

Fitzsimmons, E.J., Hallmark, S., McDonald, T., Orellana, M., \& Matulac, D. (2007). The effectiveness of Iowa's automated red light running enforcement programs (CTRE Project 05-226). Ames, IA: Center for Transportation Research and Education, Iowa State University.

Florida Department of Transportation (FDOT). (n.d.). Roadway improvements. Retrieved January 12, 2014, from http://www.dot.state.fl.us/trafficoperations/operations/safetyisgolden_rdwy_improvement s.shtm

Google Earth. (2013). Retrieved from https://www.google.com/earth/
Google Maps. (2013). Retrieved from http://www.maps.google.com
Hallmark, S., Oneyear, N., \& McDonald, T. (2011). Evaluating the effectiveness of red light running camera enforcement in Cedar Rapids and developing guidelines for selection and use of red light running countermeasures (InTrans Project 10-386). Ames, IA: Center for Transportation Research and Education, Iowa State University.

Hallmark, S., Oneyear, N., \& McDonald, T. (2012). Toolbox of countermeasures to reduce red light running (InTrans Project 10-386). Ames, IA: Center for Transportation Research and Education, Iowa State University.

Hill, S.E., \& Lindly, J.K. (2003). Red light running prediction and analysis (UTCA Final Report 02112). Tuscaloosa, AL: University Transportation Center for Alabama.

Hsu, P., Smith, J., \& Rice, E. (2009). Red-signal enforcement lights (FHWA-SA-09-005). Retrieved from http://safety.fhwa.dot.gov/intersection/resources/techsum/fhwasa09005/fhwasa09005.pdf

Hu, W., McCartt, A.T., \& Teoh, E.R. (2011). Effects of red light camera enforcement on fatal crashes in large US cities. Journal of Safety Research, 42(4), 277-282.

Institute of Transportation Engineers (ITE). (2009). Traffic engineering handbook (6 $6^{\text {th }}$ ed.). Washington, DC: Author.

Insurance Institute for Highway Safety (IIHS). (n.d.-a). Red light running. Retrieved April 15, 2014, from http://www.iihs.org/iihs/topics/laws/automated_enforcement?topicName=red-light-running
Insurance Institute for Highway Safety (IIHS). (n.d.-b). Red light running $Q \& A$. Retrieved April 15, 2014, from http://www.iihs.org/iihs/topics/t/red-light-running/qanda
Insurance Institute for Highway Safety (IIHS). (2011). Special issue: Red light running. Status Report, 46(1).

Kansas Department of Transportation (KDOT). (2013). Driver contributing circumstances. 2010 Kansas traffic accident facts. Retrieved from
http://www.ksdot.org/Assets/wwwksdotorg/bureaus/burTransPlan/prodinfo/2010factsboo k/DriverCCs.pdf

KC hits brakes on red-light cameras after court ruling. (2013, November 7). KMBC.com. Retrieved November 14, 2013, from http://www.kmbc.com/news/mo-appeals-court-rules-against-redlight-camera-laws/22836906
K.S.A. § 21-6101(a)(6) (2013). Retrieved May 9, 2014 from http://kslegislature.org/li/b2013_14/statute/021_000_0000_chapter/021_061_0000_articl e/021_061_0001_section/021_061_0001_k/

McCartt, A.T., \& Eichelberger, A.H. (2012). Attitudes toward red light camera enforcement in cities with camera programs. Traffic Injury Prevention, 13(1), 14-23.

McGee, H.W., \& Eccles, K.A. (2003). Impact of red light camera enforcement on crash experience (NCHRP Report 310). Washington, DC: Transportation Research Board.

McGee, H.W., Eccles, K.A., Clark, J., Prothe, L., \& O’Connell, C. (2003). Making intersections safer: A toolbox of engineering countermeasures to reduce red-light running: An informational report. Washington, DC: Institute of Transportation Engineers.

McGee, H.W., Moriarty, K., Eccles, K.A., Liu, M., Gates, T., Retting, R. (2012). Guidelines for timing yellow and all-red intervals at signalized intersections (NCHRP Report 731). Washington, DC: Transportation Research Board.

Messer, C.J., Sunkari, S.R., Charara, H.A., \& Parker, R.T. (2004). Development of advance warning systems for end-of-green phase at high speed traffic signals (Report 0-4260-4). College Station, TX: Texas Transportation Institute, Texas A\&M University System.

Minnesota Local Technical Assistance Program. (2009). 2009 Local Operational Research Assistance (OPERA) Program Annual Report: Innovation at Work. Retrieved from http://www.mnltap.umn.edu/about/programs/opera/annual/2009/documents/2009annual.p df

Nicholson, A.J. (1985). The variability of accident counts. Accident Analysis \& Prevention, 17(1), 47-56.

Persaud, B.N., Retting, R.A., Garder, P.E., \& Lord, D. (2001). Safety effect of roundabout conversions in the United States: Empirical Bayes observational before-after study. Transportation Research Record, 1751, 1-8.

Peterson, J. (2011, March 13). Some lawmakers want to ban red light cameras. KSHB 41 Action News. Retrieved November 2, 2013, from http://www.kshb.com/news/state/missouri/some-lawmakers-want-to-ban-red-lightcameras

Polanis, S.F. (2002, March). Improving intersections safety through design and operations (Examples). Presented at Institute of Transportation Engineers 2002 Spring Conference, Palm Harbor, FL.

Porter, B.E., Berry, T.D., Harlow, J., \& Vandecar, T. (1999). A Nationwide Survey of Red Light Running: Measuring Driver Behaviors for the "Stop Red Light Running" Program. Norfolk, VA: Old Dominion University.

Reddy, V., Abdel-Aty, M., \& Pinapaka, S. (2008). Evaluation of innovative safety treatments: A study of the effectiveness of white enforcement lights. Tallahassee, FL: Florida Department of Transportation.

Retting, R.A., Ferguson, S.A., \& Farmer, C.M. (2008). Reducing red light running through longer yellow signal timing and red light camera enforcement: Results of a field investigation. Accident Analysis \& Prevention, 40(1), 327-333.

Retting, R.A., \& Kyrychenko, S.Y. (2002). Reductions in injury crashes associated with red light camera enforcement in Oxnard, California. American Journal of Public Health, 92(11), 1822-1825.

Retting, R.A., Ulmer, R.G., \& Williams, A.F. (1999). Prevalence and characteristics of red light running crashes in the United States. Accident Analysis \& Prevention, 31(6), 687-694.

Retting, R.A., \& Williams, A.F. (1996). Characteristics of red light violators: Results of a field investigation. Journal of Safety Research, 27(1), 9-15.

Retting, R.A., Williams, A.F., Farmer, C.M., \& Feldman, A.F. (1999a). Evaluation of red light camera enforcement in Fairfax, Va., USA. ITE Journal, 69(8), 30-34.

Retting, R.A., Williams, A.F., Farmer, C.M., \& Feldman, A.F. (1999b). Evaluation of red light camera enforcement in Oxnard, California. Accident Analysis \& Prevention, 31(3), 169174.

Retting, R.A., Williams, A.F., \& Greene, M.A. (1998). Red-light running and sensible countermeasures: Summary of research findings. Transportation Research Record, 1640, 23-26.

Rodegerdts, L., Blogg, M., Wemple, E., Myers, E., Kyte, M., Dixon, M...Carter, D. (2007). Roundabouts in the United States (NCHRP Report 572). Washington, DC: Transportation Research Board.

Schattler, K.L., Datta, T.K., \& Hill, C.L. (2003). Change and clearance interval design on redlight running and late exits. Transportation Research Record, 1856, 193-201.

Schattler, K.L., McAvoy, D., Christ, M.T., \& Glauber, C.M. (2011). Impact of signal mounting configurations on red-light running at urban signalized intersections. ITE Journal, 81(2), 22-24, 29-30.

Tarawneh, T.M., Singh, V.A., \& McCoy, P.T. (1999). Investigation of effectiveness of media advertising and police enforcement in reducing red-light violations. Transportation Research Record, 1693, 37-45,

Tydlacka, J. (2011). Evaluation of lighted pavement marker stop bars and LED outlined traffic signal backplates. IMSA Journal, 49(3), 44-50.

Washburn, S.S., \& Courage, K.G. (2004). Investigation of red light running factors. Knoxville, TN: Southeast Transportation Center, University of Tennessee.

Washington, S.P., Karlaftis, M.G., \& Mannering, F.L. (2010). Statistical and econometric methods for transportation data analysis ($2^{\text {nd }}$ ed.). Boca Raton, FL: Chapman and Hall/CRC Press.

Yang, C.Y.D., \& Najm, W.G. (2006). Analysis of red light violation data collected from intersections equipped with red light photo enforcement cameras (DOT HS 810 580). Washington, DC: National Highway Traffic Safety Administration.

Zegeer, C.V., \& Deen, R.C. (1978). Green-extension systems at high-speed intersections (Research Report 496). Frankfort, KY: Kentucky Department of Transportation.

Appendix: Press Release for Overland Park and Lawrence

KU Engineering Researchers Study System to Improve Intersection Safety

LAWRENCE - Researchers at the University of Kansas School of Engineering have partnered with the cities of Lawrence, Kan. and Overland Park, Kan., to increase safety at four busy intersections by reducing red light running violations and simplifying law enforcement efforts to monitor potential infractions.

The project is funded by the Kansas Department of Transportation and the Mid-America Transportation Center and is under the direction of Steven Schrock and Eric Fitzsimmons with the KU School of Engineering. Red light running at intersections with traffic signals continues to be a serious safety concern for Kansas drivers, pedestrians, and bicyclists. In 2011, the Federal Highway Administration reported 676 fatalities (10 percent of all signalized intersection crashes) were due to red light running in the United States that based on 2009 state highway agency crash data. Since automated enforcement by traffic camera is not used in Kansas, researchers will install a blue confirmation light system at the following intersections starting the first week of July:
$>$ Iowa Street and $23^{\text {rd }}$ Street in Lawrence
$>$ Louisiana Street and $23^{\text {rd }}$ Street in Lawrence
> College Boulevard and Quivira Road in Overland Park
$>75^{\text {th }}$ Street and Metcalf Avenue in Overland Park
These intersections were selected based on recommendations from each city's public works department, police department and the KU research team.

The blue confirmation light system is a low-cost, non-invasive countermeasure that is designed to help police officers safely identify and pull over drivers who run a red light while sitting downstream of the intersection. Each traffic signal mast arm will have one or two blue lights, one adjacent to the left turn signal, the other next to the through signal. While the traffic signal is green, the blue lights remain off. The blue light comes on the moment the traffic signal turns red, so law enforcement officials monitoring an intersection can use the blue light as a visual cue. If it's illuminated, no cars from that movement should enter the intersection. The blue light is visible from 360 degrees, so officers will know a motorist has run a red light even if they cannot see the traffic signal change colors.

The goal is to reduce the number of officers needed to monitor an intersection and reduce the need to interrupt traffic to chase a violating vehicle through an intersection. KU School of Engineering researchers will evaluate the confirmation light system over the next six months and report effectiveness results to city and state officials. The system has shown promising results in similar communities located in Florida, Kentucky, Texas, and Minnesota.
"The School of Engineering is excited to partner with the cities of Lawrence and Overland Park in the effort to improve driver safety at these busy intersections," said Steve Schrock, associate professor of civil, environmental and architectural engineering at the University of Kansas. "We
believe this system can be a valuable tool for law enforcement, while substantially reducing the instances of red light running and making the roads safer for everyone."

Overland Park Police Chief John Douglass had this to say about the concept: "The safety of our citizens and the officers who serve them are paramount to what we do on a daily basis. This simple, yet innovative system will allow us to safely monitor and enforce traffic violations at two of the city's busiest intersections in regard to traffic accidents".
\# \# \#

K-TRAN

KANSAS TRANSPORTATION RESEARCH AND NEW-DEVELOPMENT PROGRAM

